\qquad
MATH 172 Honors
Exam 2
Sections 200
Spring 2022
P. Yasskin

1	$/ 8$	6	$/ 10$
2	$/ 10$	7	$/ 10$
3	$/ 10$	8	$/ 10$
4	$/ 10$	9	$/ 5$
5	$/ 10$	10	$/ 20$
		Total	$/ 103$

1. (8 points) Consider the general partial fraction expansion $\frac{x^{3}-x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{A x+B}{x^{2}+4}+\frac{C x+D}{\left(x^{2}+4\right)^{2}}$.

Find the coefficients. (Circle 1 answer in each row.)

$A=$	-4	-3	-2	-1	0	1	2	3	4
$B=$	-4	-3	-2	-1	0	1	2	3	4
$C=$	-4	-3	-2	-1	0	1	2	3	4
$D=$	-4	-3	-2	-1	0	1	2	3	4

Work Out: (Points indicated. Part credit possible. Show all work.)
2. (10 points) Given the partial fraction expansion $\frac{2 x-2}{x^{4}-1}=\frac{1}{x+1}+\frac{1-x}{x^{2}+1}$, compute $\int_{0}^{1} \frac{2 x-2}{x^{4}-1} d x$. Simplify and evaluate all trig and inverse trig functions.
3. (10 points) Compute $\int_{0}^{1} \frac{e^{-x}}{1-e^{-x}} d x$ or show why it diverges and whether it is ∞ or $-\infty$.
4. (10 points) Show why $\int_{1}^{\infty} \frac{x+\sin x}{x^{5 / 2}} d x$ converges or diverges.
5. (10 points) A cup is made by revolving the curve $x=\sin y$ about the y-axis for $0 \leq y \leq \frac{\pi}{2}$.
Find its volume.

6. (10 points) A cone is made by revolving the line $y=2 x$ about the y-axis for $0 \leq y \leq 6 \mathrm{~cm}$. It is filled with water up to a depth of 4 cm . It is sucked out a straw which reaches 3 cm above the top of the cone. How much work is done? Give your answer as a multiple of $g \delta$ where g is the acceleration of gravity and δ is the density.
7. (10 points) Solve the initial value problem:

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}} \quad y(1)=3
$$

Find the general (explicit) solution and then find $y(0)$.
8. (10 points) Solve the initial value problem:

$$
\frac{d y}{d x}=2 x y+e^{x^{2}} \quad y(0)=4
$$

Find the general (explicit) solution and then $y(1)$.
9. (5 points) The plot at the right is the slope field for the differential equation

$$
\frac{d y}{d x}=x^{2}+y^{2}
$$

On the plot, draw the solution curve satisfying the initial condition

$$
y(0)=\frac{1}{2}
$$

10. (20 points) A pot contains 1000 L of sugar water with a concentration of $0.01 \frac{\mathrm{~kg} \text { sugar }}{\mathrm{L} \text { water }}$. Sugar water with a concentration of $0.04 \frac{\mathrm{~kg} \text { sugar }}{\mathrm{L} \text { water }}$ is poured into the pot at $50 \frac{\mathrm{~L}}{\mathrm{~min}}$. The sugar water is kept mixed and drains from the tank at $50 \frac{\mathrm{~L}}{\mathrm{~min}}$.
Let $S(t)$ be the kg of sugar in the pot at time t.
a. How much sugar is in the tank at $t=0$?

$$
S(0)=
$$

\qquad
b. What is the differential equation for the rate of change of $S(t)$?

$$
\frac{d S}{d t}=
$$

\qquad
c. How much sugar is in the pot at time t ?

$$
S(t)=
$$

\qquad
d. Is the sugar in the pot increasing or decreasing with time?

Circle: Increasing

