MATH 172 Honors
Sections 200

Exam 2
Solutions
Solutions

Spring 2022
P. Yasskin

Multiple Choice: (8 points. No part credit. Circle your answers.)

1	$/ 8$	6	$/ 10$
2	$/ 10$	7	$/ 10$
3	$/ 10$	8	$/ 10$
4	$/ 10$	9	$/ 5$
5	$/ 10$	10	$/ 20$
		Total	$/ 103$

1. (8 points) Consider the general partial fraction expansion $\frac{x^{3}-x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{A x+B}{x^{2}+4}+\frac{C x+D}{\left(x^{2}+4\right)^{2}}$. Find the coefficients. (Circle 1 answer in each row.)

$A=$	-4	-3	-2	-1	0	$\boxed{1}$	2	3	4
$B=$	-4	-3	-2	-1	0	1	2	3	4
$C=$	-4	-3	-2	-1	0	1	2	3	4
$D=$	-4	-3	-2	-1	0	1	2	3	4

Solution: We clear the denominator and expand:

$$
\begin{aligned}
x^{3}-x^{2} & =(A x+B)\left(x^{2}+4\right)+(C x+D) \\
& =A x^{3}+B x^{2}+(4 A+C) x+(4 B+D)
\end{aligned}
$$

We equate coefficients: $\quad A=1 \quad B=-1 \quad C=-4 A=-4 \quad D=-4 B=4 \quad$ So:

$$
\frac{x^{3}-x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{x-1}{x^{2}+4}+\frac{-4 x+4}{\left(x^{2}+4\right)^{2}}
$$

Work Out: (Points indicated. Part credit possible. Show all work.)
2. (10 points) Given the partial fraction expansion $\frac{2 x-2}{x^{4}-1}=\frac{1}{x+1}+\frac{1-x}{x^{2}+1}$, compute $\int_{0}^{1} \frac{2 x-2}{x^{4}-1} d x$. Simplify and evaluate all trig and inverse trig functions.

$$
\text { Solution: } \begin{aligned}
& \int_{0}^{1} \frac{2 x-2}{x^{4}-1} d x=\int_{0}^{1} \frac{1}{x+1}+\frac{1-x}{x^{2}+1} d x=\int_{0}^{1} \frac{1}{x+1}+\frac{1}{x^{2}+1}-\frac{x}{x^{2}+1} d x \\
= & {\left[\ln |x+1|+\arctan x-\frac{1}{2} \ln \left|x^{2}+1\right|\right]_{0}^{1}=\ln 2+\arctan 1-\frac{1}{2} \ln 2=\frac{1}{2} \ln 2+\frac{\pi}{4} }
\end{aligned}
$$

3. (10 points) Compute $\int_{0}^{1} \frac{e^{-x}}{1-e^{-x}} d x$ or show why it diverges and whether it is ∞ or $-\infty$.

Solution: Let $u=1-e^{-x}$. Then $d u=e^{-x} d x$ and
$\int_{0}^{1} \frac{e^{-x}}{1-e^{-x}} d x=\int_{0}^{1-e^{-1}} \frac{1}{u} d u=[\ln |u|]_{0}^{1-e^{-1}}=\ln \left|1-e^{-1}\right|-\lim _{u \rightarrow 0^{+}} \ln u=\ln \left|1-e^{-1}\right|--\infty=\infty$
4. (10 points) Show why $\int_{1}^{\infty} \frac{x+\sin x}{x^{5 / 2}} d x$ converges or diverges.

Solution: Notice $x-1 \leq x+\sin x \leq x+1$. So $\frac{x-1}{x^{5 / 2}} \leq \frac{x+\sin x}{x^{5 / 2}} \leq \frac{x+1}{x^{5 / 2}}$.
$\int_{1}^{\infty} \frac{x-1}{x^{5 / 2}} d x=\int_{1}^{\infty}\left(x^{-3 / 2}-x^{-5 / 2}\right) d x=\left[-2 x^{-1 / 2}+\frac{2 x^{-3 / 2}}{3}\right]_{1}^{\infty}=(-0+0)-\left(-2+\frac{2}{3}\right)=\frac{4}{3}$
$\int_{1}^{\infty} \frac{x+1}{x^{5 / 2}} d x=\int_{1}^{\infty}\left(x^{-3 / 2}+x^{-5 / 2}\right) d x=\left[-2 x^{-1 / 2}-\frac{2 x^{-3 / 2}}{3}\right]_{1}^{\infty}=(-0-0)-\left(-2-\frac{2}{3}\right)=\frac{8}{3}$
Since $\int_{1}^{\infty} \frac{x+\sin x}{x^{5 / 2}} d x \leq \int_{1}^{\infty} \frac{x+1}{x^{5 / 2}} d x=\frac{8}{3}$, we know $\int_{1}^{\infty} \frac{x+\sin x}{x^{5 / 2}} d x$ converges.
5. (10 points) A cup is made by revolving the curve $x=\sin y$ about the y-axis for $0 \leq y \leq \frac{\pi}{2}$.
Find its volume.

Solution: The radius is $r=x=\sin y$. The cross sectional area is $A=\pi r^{2}=\pi \sin ^{2} y$.
The volume is $V=\int_{0}^{\pi / 2} A(y) d y=\int_{0}^{\pi / 2} \pi \sin ^{2} y d y=\int_{0}^{\pi / 2} \pi \frac{1-\cos 2 y}{2} d y=\frac{\pi}{2}\left[y-\frac{\sin 2 y}{2}\right]_{0}^{\pi / 2}=\frac{\pi^{2}}{4}$
6. (10 points) A cone is made by revolving the line $y=2 x$ about the y-axis for $0 \leq y \leq 6 \mathrm{~cm}$. It is filled with water up to a depth of 4 cm . It is sucked out a straw which reaches 3 cm above the top of the cone. How much work is done? Give your answer as a multiple of $g \delta$ where g is the acceleration of gravity and δ is the density.

Solution: The radius is $r=x=\frac{y}{2}$. The cross sectional area is $A=\pi r^{2}=\pi \frac{y^{2}}{4}$.
The slice of water at height y with thickness $d y$ has volume $d V=A d y=\frac{\pi}{4} y^{2} d y$ and weight $d F=g \delta d V=g \delta \frac{\pi}{4} y^{2} d y$. The spout is at height $y=9$. So the water at height y is lifted a distance $D=9-y$. There is water at heights $0 \leq y \leq 4$. So the work done is

$$
\begin{gathered}
W=\int D d F=\int_{0}^{4}(9-y) g \delta \frac{\pi}{4} y^{2} d y=\frac{g \delta \pi}{4} \int_{0}^{4}\left(9 y^{2}-y^{3}\right) d y=\frac{g \delta \pi}{4}\left[3 y^{3}-\frac{y^{4}}{4}\right]_{0}^{4} \\
=g \delta \pi\left(3 \cdot 4^{2}-4^{2}\right)=32 g \delta \pi
\end{gathered}
$$

7. (10 points) Solve the initial value problem:

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}} \quad y(1)=3
$$

Find the general (explicit) solution and then find $y(0)$.
Solution: The equation separates:

$$
\begin{aligned}
\int y^{2} d y & =\int x^{2} d x \\
\frac{y^{3}}{3} & =\frac{x^{3}}{3}+C
\end{aligned}
$$

We find C by using the initial condition $x=1$ when $y=3$:

$$
\begin{aligned}
\frac{3^{3}}{3} & =\frac{1^{3}}{3}+C \\
C & =9-\frac{1}{3}=\frac{26}{3}
\end{aligned}
$$

We substitute back and solve for y :

$$
\begin{aligned}
\frac{y^{3}}{3} & =\frac{x^{3}}{3}+\frac{26}{3} \\
y & =\sqrt[3]{x^{3}+26}
\end{aligned}
$$

Finally, $y(0)=\sqrt[3]{26}$
8. (10 points) Solve the initial value problem:

$$
\frac{d y}{d x}=2 x y+e^{x^{2}} \quad y(0)=4
$$

Find the general (explicit) solution and then $y(1)$.
Solution: The equation is linear. Its standard form is $\frac{d y}{d x}-2 x y=e^{x^{2}}$. We find the integrating factor:

$$
P=-2 x \quad \int P d x=\int-2 x d x=-x^{2} \quad I=e^{-x^{2}}
$$

We multiply the standard form by the integrating factor, check the left side is the derivative of a product and integrate:

$$
\begin{aligned}
e^{-x^{2}} \frac{d y}{d x}-2 x e^{-x^{2}} y & =e^{x^{2}} e^{-x^{2}} \\
\frac{d}{d x}\left(e^{-x^{2}} y\right) & =1 \\
e^{-x^{2}} y & =x+C
\end{aligned}
$$

We find C by using the initial condition $x=0$ when $y=4$:

$$
\begin{aligned}
e^{-0} 4 & =0+C \\
C & =4
\end{aligned}
$$

We substitute back and solve for y :

$$
\begin{aligned}
e^{-x^{2}} y & =x+4 \\
y & =(x+4) e^{x^{2}}
\end{aligned}
$$

Finally, $y(1)=5 e$
9. (5 points) The plot at the right is the slope field for the differential equation

$$
\frac{d y}{d x}=x^{2}+y^{2}
$$

On the plot, draw the solution curve satisfying the initial condition

$$
y(0)=\frac{1}{2}
$$

Solution: Start at ($0, \frac{1}{2}$) and move so the curve is always tangent to the slope field.
10. (20 points) A pot contains 1000 L of sugar water with a concentration of $0.01 \frac{\mathrm{~kg} \text { sugar }}{\mathrm{L} \text { water }}$. Sugar water with a concentration of $0.04 \frac{\mathrm{~kg} \text { sugar }}{\mathrm{L} \text { water }}$ is poured into the pot at $50 \frac{\mathrm{~L}}{\mathrm{~min}}$. The sugar water is kept mixed and drains from the tank at $50 \frac{\mathrm{~L}}{\mathrm{~min}}$.
Let $S(t)$ be the kg of sugar in the pot at time t.
a. How much sugar is in the tank at $t=0$?

Solution: $S(0)=1000 \mathrm{~L} \times 0.01 \frac{\mathrm{~kg}}{\mathrm{~L}}$
b. What is the differential equation for the rate of change of $S(t)$?

Solution: $\frac{d S}{d t}=[$ rate Sugar in $]-[$ rate Sugar out $]=0.04 \frac{\mathrm{~kg}}{\mathrm{~L}} 50 \frac{\mathrm{~L}}{\min }-\frac{S(t) \mathrm{kg}}{1000 \mathrm{~L}} 50 \frac{\mathrm{~L}}{\min }$

$$
\frac{d S}{d t}=2-0.05 S(t)
$$

c. How much sugar is in the pot at time t ?

Linear Solution: Standard form is:
Integrating factor is:
We multiply Standard form by Integrating factor:
We integrate:
We find C using $S=10$ when $t=0$:
We solve:
Separable Solution: We separate and integrate

$$
\begin{aligned}
& \int \frac{d S}{2-0.05 S}=\int d t \quad \Rightarrow \quad \frac{-1}{.05} \ln |2-0.05 S|=t+C \\
& \Rightarrow \quad \ln |2-0.05 S|=-.05 t-.05 C \quad \Rightarrow \quad|2-0.05 S|=e^{-.05 C} e^{-.05 t} \\
& \Rightarrow \quad 2-0.05 S=A e^{-.05 t} \\
& \text { We find } A \text { using } S=10 \text { when } t=0: \quad 2-0.05 \times 10=A=1.5 \\
& \text { We solve: } \quad 2-0.05 S=1.5 e^{-.05 t} \quad 0.05 S=2-1.5 e^{-.05 t} \\
& S=40-30 e^{-.05 t}
\end{aligned}
$$

d. Is the sugar in the pot increasing or decreasing with time?

Solution: $\frac{d S}{d t}=-30 e^{-.05 t}(-.05)=1.5 e^{-.05 t}>0$

