Name_

MATH 172 Honors	Exam 3	Spring 2022
Sections 200		P. Yasskin

/10 5 /20 1 2 /10 6 /10 /20 7 /10 3 /20 8 /10 4 Total /110

All Work Out Points indicated. Part credit possible. Show all work.

1. (10 points) Compute $L = \lim_{n \to \infty} \left(\frac{3}{n^4}\right)^{2/\ln n}$.

3. (20 points) Determine whether each series is absolutely convergent, conditionally convergent or divergent. Be sure to name any convergence test(s) you use and check out all of its conditions:

a.
$$\sum_{n=0}^{\infty} \frac{n^2 + \ln n}{n^3 + \ln n}$$

b.
$$\sum_{n=1}^{\infty} \frac{2n+3}{(n^2+3n)^2}$$

c.
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{n+1}{n-1}$$

d.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2}{n^{3/4}}$$

- **4**. (20 points) Consider the sequence recursively defined by $a_{n+1} = 5 \frac{4}{a_n}$ starting from $a_1 = 2$. Prove the limit exist and find it. (You may assume $a_n > 0$ without proof.)
 - **a**. Write out the first 3 terms:

 $a_1 = a_2 = a_3 =$

b. Assuming the limit exists, find the possible values.

- c. What do you need to prove?

 Circle one:
 increasing

 decreasing

 Circle one and fill in the blank:
 bounded above by _____ bounded below by _____
- d. Prove it is bounded above or below:

e. Prove it is increasing or decreasing:

f. What do you conclude. What Theorem did you use?

5. (20 points) Find the interval of convergence of the series

$$\sum_{n=1}^{\infty} \frac{n}{(n^2+1)2^n} (x-6)^n.$$

a. Find the radius of convergence and state the open interval of absolute convergence.

R =____. Absolutely convergent on (_____, ____).

b. Check the Left Endpoint:

<i>x</i> =	Write the series:	Circle one:
Reasons:		Convergent
		Divergent

c. Check the Right Endpoint:

<i>x</i> =	Write the series:	Circle one:
Reasons:		Convergent
		Divergent

d. State the Interval of Convergence.

Interval=

6. (10 points) Compute $\sum_{n=1}^{\infty} \left[\sec\left(\frac{1}{n}\right) - \sec\left(\frac{1}{n+1}\right) \right]$.

7. (10 points) Find the Maclaurin series for $f(x) = \frac{\sin(x^2)}{x}$. Give the answer in both summation form and \cdots form with at least 3 terms. Then find $f^{(9)}(0)$, the 9th derivative at 0.

8. (10 points) Compute
$$\lim_{x\to 0} \frac{\cos(x^2) - 1 + \frac{x^4}{2}}{x^8}$$