\qquad
MATH 172 Honors
Exam 3
Spring 2022
Sections 200
Solutions
P. Yasskin

All Work Out
Points indicated. Part credit possible. Show all work.

1	$/ 10$	5	$/ 20$
2	$/ 10$	6	$/ 10$
3	$/ 20$	7	$/ 10$
4	$/ 20$	8	$/ 10$
		Total	$/ 110$

1. (10 points) Compute $L=\lim _{n \rightarrow \infty}\left(\frac{3}{n^{4}}\right)^{2 / \ln n}$.

Solution: $\ln L=\lim _{n \rightarrow \infty} \ln \left(\frac{3}{n^{4}}\right)^{2 / \ln n}=\lim _{n \rightarrow \infty} \frac{2}{\ln n} \ln \left(\frac{3}{n^{4}}\right) \stackrel{\mathrm{PH}}{=} \lim _{n \rightarrow \infty} \frac{\frac{\frac{2}{n^{4}}}{\left.\frac{-12}{n^{5}}\right)}}{\frac{1}{n}}$

$$
=\lim _{n \rightarrow \infty} \frac{2 n}{\frac{3}{n^{4}}}\left(\frac{-12}{n^{5}}\right)=\lim _{n \rightarrow \infty} \frac{-24}{3}=-8 \quad L=e^{-8}
$$

2. (10 points) This rectangular spiral is made by starting at $(0,0)$, moving right by 1 , up by $\frac{1}{2}$, left by $\frac{1}{4}$, down by $\frac{1}{8}$, and repeating with each step being $\frac{1}{2}$ as long the previous step.
Find the coordinates of the limit point.

Solution: The x coordinate starts at 0 increases by 1 , decreases by $\frac{1}{4}$, increases by $\frac{1}{16}$, etc. This is a geometric series with $a=1$ and $r=\frac{-1}{4}$. So $x=\sum_{n=0}^{\infty}\left(\frac{-1}{4}\right)^{n}=\frac{1}{1+\frac{1}{4}}=\frac{4}{5}$. The y coordinate starts at 0 increases by $\frac{1}{2}$, decreases by $\frac{1}{8}$, increases by $\frac{1}{32}$, etc. This is a geometric series with $a=\frac{1}{2}$ and $r=\frac{-1}{4}$. So $y=\sum_{n=0}^{\infty} \frac{1}{2}\left(\frac{-1}{4}\right)^{n}=\frac{\frac{1}{2}}{1+\frac{1}{4}}=\frac{2}{5}$. The limit point is $(x, y)=\left(\frac{4}{5}, \frac{2}{5}\right)$.
3. (20 points) Determine whether each series is absolutely convergent, conditionally convergent or divergent. Be sure to name any convergence test(s) you use and check out all of its conditions:
a. $\sum_{n=0}^{\infty} \frac{n^{2}+\ln n}{n^{3}+\ln n}$

Solution: We compare to $\sum_{n=0}^{\infty} \frac{1}{n}$ which diverges because it is the harmonic series.
We use the Limit Comparison Test.
$L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}+\ln n}{n^{3}+\ln n} \frac{n}{1}=\lim _{n \rightarrow \infty} \frac{n^{3}+n \ln n}{n^{3}+\ln n}=\lim _{n \rightarrow \infty} \frac{1+\frac{\ln n}{n^{2}}}{1+\frac{\ln n}{n^{3}}}=1$
Since $0<L=1<\infty$, the original series also diverges.
b. $\sum_{n=1}^{\infty} \frac{2 n+3}{\left(n^{2}+3 n\right)^{2}}$

Solution: We apply the Integral Test:
$\int_{1}^{\infty} \frac{2 n+3}{\left(n^{2}+3 n\right)^{2}} d n=\left[\frac{-1}{n^{2}+3 n}\right]_{1}^{\infty}=0-\frac{-1}{4}=\frac{1}{4}$
Since the integral converges, the series also converges. Since the terms of the series are positive, it is also absolutely convergent.
c. $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{n+1}{n-1}$

Solution: The Alternating Series Test fails because $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{n-1}=1 \neq 0$.
But this limit also says the series diverges by the $n^{\text {th }}$-Term Divergence test.
d. $\sum_{n=1}^{\infty}(-1)^{n} \frac{2}{n^{3 / 4}}$

Solution: We apply the Alternating Series Test.
(1) alternating because $a_{n}=(-1)^{n} b_{n}$ with $b_{n}=\frac{2}{n^{3 / 4}}>0$
(2) decreasing in absolute value because $b_{n}=\frac{2}{n^{3 / 4}}$ gets smaller as n gets larger.
(3) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{2}{n^{3 / 4}}=0$ So the series converges.

The related absolute series is $\sum_{n=1}^{\infty} \frac{2}{n^{3 / 4}}$ which is a p-series with $p=\frac{3}{4}<1$ and so is divergent.
So the original series is conditionally convergent.
4. (20 points) Consider the sequence recursively defined by $a_{n+1}=5-\frac{4}{a_{n}}$ starting from $a_{1}=2$. Prove the limit exist and find it. (You may assume $a_{n}>0$ without proof.)
a. Write out the first 3 terms:

$$
a_{1}=\quad a_{2}=\quad a_{3}=
$$

Answer: $\quad a_{1}=2 \quad a_{2}=3 \quad a_{3}=5-\frac{4}{3}=\frac{11}{3}=3.67$
b. Assuming the limit exists, find the possible values.

Solution: Let $L=\lim _{n \rightarrow \infty} a_{n}$. Then $\lim _{n \rightarrow \infty} a_{n+1}=L$ also. Take the limit of the recursion formula.
$L=5-\frac{4}{L} \quad \Rightarrow \quad L^{2}=5 L-4 \quad \Rightarrow \quad L^{2}-5 L+4=0 \quad \Rightarrow \quad(L-4)(L-1)=0$
$L=1$ or 4
c. What do you need to prove?

Circle one:

increasing

 decreasingCircle one and fill in the blank: bounded above by \qquad bounded below by \qquad
Answer: increasing and bounded above by 4 or anything larger.
d. Prove it is bounded above or below:

Solution: We want to prove bounded above by 4 or $a_{n} \leq 4$.
Initialization Step: $a_{1}=2 \leq 4$
Induction Step: Assume $a_{k} \leq 4$. We want to prove $a_{k+1} \leq 4$.
Proof: $\quad a_{k} \leq 4 \quad \Rightarrow \quad \frac{4}{a_{k}} \geq \frac{4}{4}=1 \quad \Rightarrow \quad-\frac{4}{a_{k}} \leq-1$

$$
\Rightarrow \quad 5-\frac{4}{a_{k}} \leq 5-1=4 \quad \Rightarrow \quad a_{k+1} \leq 4
$$

e. Prove it is increasing or decreasing:

Solution: We want to prove increasing or $a_{n+1}>a_{n}$.
Initialization Step: $a_{2}=3>2=a_{1}$
Induction Step: Assume $a_{k+1}>a_{k}$. We want to prove $a_{k+2}>a_{k+1}$.
Proof: $\quad a_{k+1}>a_{k} \quad \Rightarrow \quad \frac{4}{a_{k+1}}<\frac{4}{a_{k}} \quad \Rightarrow \quad-\frac{4}{a_{k+1}}>-\frac{4}{a_{k}}$

$$
\Rightarrow \quad 5-\frac{4}{a_{k+1}}>5-\frac{4}{a_{k}} \quad \Rightarrow \quad a_{k+2}>a_{k+1}
$$

f. What do you conclude. What Theorem did you use?

Solution: By the Bounded Monotonic Sequence Theorem, the sequence converges.
Since it starts from 2 and increases and the only possible limits are 1 and 4, the limit must be 4 .
5. (20 points) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right) 2^{n}}(x-6)^{n}$.
a. Find the radius of convergence and state the open interval of absolute convergence.

$$
R=
$$

\qquad . Absolutely convergent on \qquad , \qquad).

Solution: We use the Ratio Test. $\left|a_{n}\right|=\frac{n|x-6|^{n}}{\left(n^{2}+1\right) 2^{n}} \quad\left|a_{n+1}\right|=\frac{(n+1)|x-6|^{n+1}}{\left((n+1)^{2}+1\right) 2^{n+1}}$
$\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{(n+1)|x-6|^{n+1}}{\left((n+1)^{2}+1\right) 2^{n+1}} \frac{\left(n^{2}+1\right) 2^{n}}{n|x-6|^{n}}=\frac{|x-6|}{2}>1$
$|x-6|<2$ So $R=2$. Absolutely convergent on $(4,8)$
b. Check the Left Endpoint:
$x=$ \qquad Write the series:
Circle one:
Reasons:
Divergent
Solution: $x=4: \quad \sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right) 2^{n}}(-2)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\left(n^{2}+1\right)}$
This converges by the Alternating Series Test because $\frac{n}{\left(n^{2}+1\right)}$ is positive, decreasing and $\lim _{n \rightarrow \infty} \frac{n}{\left(n^{2}+1\right)}=0$.
c. Check the Right Endpoint:
$x=$ \qquad Write the series: \qquad Circle one:
Reasons:

Solution: $x=8: \quad \sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right) 2^{n}}(2)^{n}=\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
We apply the Integral Test. $\int_{1}^{\infty} \frac{n}{n^{2}+1} d n=\left[\ln \left(n^{2}+1\right)\right]_{1}^{\infty}=\infty$
Since the integral diverges, the series diverges.
d. State the Interval of Convergence.

Interval= \qquad
Solution: The Interval of Convergence.is: $[4,8)$
6. (10 points) Compute $\sum_{n=1}^{\infty}\left[\sec \left(\frac{1}{n}\right)-\sec \left(\frac{1}{n+1}\right)\right]$.

Solution: The series is telescoping. The partial sum is:

$$
\begin{aligned}
S_{k}= & \sum_{n=1}^{k}\left[\sec \left(\frac{1}{n}\right)-\sec \left(\frac{1}{n+1}\right)\right] \\
& =\left(\sec \left(\frac{1}{1}\right)-\sec \left(\frac{1}{2}\right)\right)+\left(\sec \left(\frac{1}{2}\right)-\sec \left(\frac{1}{3}\right)\right)+\cdots+\left(\sec \left(\frac{1}{k}\right)-\sec \left(\frac{1}{k+1}\right)\right) \\
& =\sec (1)-\sec \left(\frac{1}{k+1}\right) \\
S= & \lim _{n \rightarrow \infty} S_{k}=\lim _{n \rightarrow \infty}\left(\sec (1)-\sec \left(\frac{1}{k+1}\right)\right)=\sec (1)-\sec (0)=\sec (1)-1
\end{aligned}
$$

7. (10 points) Find the Maclaurin series for $f(x)=\frac{\sin \left(x^{2}\right)}{x}$.

Give the answer in both summation form and ... form with at least 3 terms.
Then find $f^{(9)}(0)$, the $9^{\text {th }}$ derivative at 0 .
Solution: We start from the Maclaurin series for $\sin u$, substitute $u=x^{2}$ and divide by x. $\sin u=u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\frac{u^{7}}{7!} \cdots=\sum_{k=1}^{\infty} \frac{(-1)^{k} u^{2 k+1}}{(2 k+1)!}$
$\sin x^{2}=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!} \cdots=\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{4 k+2}}{(2 k+1)!}$
$f(x)=\frac{\sin \left(x^{2}\right)}{x}=x-\frac{x^{5}}{3!}+\frac{x^{9}}{5!}-\frac{x^{13}}{7!} \cdots=\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{4 k+1}}{(2 k+1)!}$
We compare this to the general Maclaurin series: $\quad f(x)=\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$
So $n=9=4 k+1$ when $k=2$. The $n=9$ term is $\frac{f^{(9)}(0)}{9!} x^{9}=\frac{(-1)^{2} x^{4 \cdot 2+1}}{(2 \cdot 2+1)!}=\frac{x^{9}}{5!}$.
So $f^{(9)}(0)=\frac{9!}{5!}$.
8. (10 points) Compute $\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1+\frac{x^{4}}{2}}{x^{8}}$

Solution: $\cos u=1-\frac{u^{2}}{2!}+\frac{u^{4}}{4!}-\cdots \quad \cos x^{2}=1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\cdots$
$\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1+\frac{x^{4}}{2}}{x^{8}}=\lim _{x \rightarrow 0} \frac{\left(1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\cdots\right)-1+\frac{x^{4}}{2}}{x^{8}}=\frac{1}{4!}$

