Name \qquad
MATH 221
Exam 1 Version A
Fall 2019
Section 504
P. Yasskin

$1-9$	$/ 54$	11	$/ 15$
10	$/ 36$	Total	$/ 105$

Multiple Choice: (6 points each. No part credit.)

1. Find the angle between the vectors $\vec{a}=\langle 1,2,1\rangle$ and $\vec{b}=\langle 0,1,1\rangle$.
a. 0°
b. 30°
c. 45°
d. 60°
e. 90°
2. Two tugboats are pulling on a barge with the forces:

$$
\vec{F}_{1}=\langle 4,2\rangle \text { and } \vec{F}_{2}=\langle-2,1\rangle
$$

They move the barge from $P=(1,0)$ to $Q=(2,4)$. Find the work done.
a. 20
b. 18
c. 16
d. 14
e. 12
3. If \vec{u} points West and \vec{v} points NorthEast, where does $\vec{u} \times \vec{v}$ point?
a. Down
b. Up
c. SouthWest
d. SouthEast
e. South
4. If $|\vec{u}|=2,|\vec{v}|=5$ and $\vec{u} \cdot \vec{v}=6$, what is $|\vec{u} \times \vec{v}|$?
a. 64
b. 8
c. 6
d. 4
e. 2
5. Find the area of the triangle with vertices $A=(2,3,4), \quad B=(4,3,2)$ and $C=(4,2,4)$.
a. 12
b. $\sqrt{12}$
c. 6
d. $\sqrt{6}$
e. $\sqrt{3}$
6. Find a vector \vec{w} of length 6 in the same direction as $\vec{v}=\langle 2,1,-2\rangle$. The sum of its components is
a. 1
b. 2
c. 6
d. 8
e. 12
7. Classify the surface: $2 x^{2}-8 x-y^{2}+6 y+z^{2}=2$.
a. Hyperbolic Paraboloid
b. Hyperbolic Cylinder
c. Hyperboloid of 1 sheet
d. Hyperboloid of 2 sheets
e. Cone
8. Find the point where the line $(x, y, z)=(1+3 t, 2+2 t, 3+t)$ intersects the plane $2 x-y+z=13$. The sum of the components is:
a. -6
b. 6
c. 12
d. 18
e. No intersection. They are parallel.
9. Find the plane through the point $P=(0,5,3)$ with tangent vectors $\vec{u}=\langle 2,1,3\rangle$ and $\vec{v}=\langle-1,2,-2\rangle$. Its z-intercept is:
a. $z=5$
b. $z=10$
c. $z=20$
d. $z=2$
e. $z=4$

Work Out: (Points indicated. Part credit possible. Show all work.)
10. (36 points) For the curve $\vec{r}(t)=\left\langle t, 2 e^{t}, e^{2 t}\right\rangle$ compute each of the following:
a. (6 pts) The velocity \vec{v}
$\vec{v}=$ \qquad
b. (6 pts) The speed $\frac{d s}{d t} \quad$ (Simplify!)

$$
\frac{d s}{d t}=
$$

c. (6 pts) The tangential acceleration a_{T}

$$
a_{T}=
$$

\qquad
d. (6 pts) The length of this curve between $(0,2,1)$ and $\left(1,2 e, e^{2}\right)$

$$
L=
$$

\qquad
e. (6 pts) The mass of a wire in the shape of this curve between ($0,2,1$) and $\left(1,2 e, e^{2}\right)$ if the linear mass density is $\delta=y z$.

$$
M=
$$

f. (6 pts) The work done to move a bead along of a wire in the shape of this curve between $(0,2,1)$ and $\left(1,2 e, e^{2}\right)$ by the force $\vec{F}=\langle 0, z, y\rangle$.

$$
W=
$$

11. (15 points) Consider the two straight lines:

$$
\begin{array}{ll}
L_{1}: & (x, y, z)=(2+t, 3,4+2 t) \\
L_{2}: & (x, y, z)=(1,2+t, 3-2 t)
\end{array}
$$

Are they parallel or skew or do they intersect? If they intersect, find the point of intersection.

