Name_____

MATH 221 Exam 1 Version A Fall 2019

Section 504 P. Yasskin

1-9	/54	11	/15
10	/36	Total	/105

Multiple Choice: (6 points each. No part credit.)

- **1**. Find the angle between the vectors $\vec{a} = \langle 1, 2, 1 \rangle$ and $\vec{b} = \langle 0, 1, 1 \rangle$.
 - **a**. 0°
 - **b**. 30°
 - **c**. 45°
 - **d**. 60°
 - **e**. 90°
- **2**. Two tugboats are pulling on a barge with the forces:

$$\vec{F}_1 = \langle 4, 2 \rangle$$
 and $\vec{F}_2 = \langle -2, 1 \rangle$

They move the barge from P = (1,0) to Q = (2,4). Find the work done.

- **a**. 20
- **b**. 18
- **c**. 16
- **d**. 14
- **e**. 12
- **3**. If \vec{u} points West and \vec{v} points NorthEast, where does $\vec{u} \times \vec{v}$ point?
 - a. Down
 - **b**. Up
 - c. SouthWest
 - **d**. SouthEast
 - e. South

- **4.** If $|\vec{u}| = 2$, $|\vec{v}| = 5$ and $\vec{u} \cdot \vec{v} = 6$, what is $|\vec{u} \times \vec{v}|$?
 - **a**. 64
 - **b**. 8
 - **c**. 6
 - **d**. 4
 - **e**. 2

- **5**. Find the area of the triangle with vertices A = (2,3,4), B = (4,3,2) and C = (4,2,4).
 - **a**. 12
 - **b**. $\sqrt{12}$
 - **c**. 6
 - **d**. $\sqrt{6}$
 - **e**. $\sqrt{3}$

- **6**. Find a vector \vec{w} of length 6 in the same direction as $\vec{v} = \langle 2, 1, -2 \rangle$. The sum of its components is
 - **a**. 1
 - **b**. 2
 - **c**. 6
 - **d**. 8
 - **e**. 12

- 7. Classify the surface: $2x^2 8x y^2 + 6y + z^2 = 2$.
 - a. Hyperbolic Paraboloid
 - b. Hyperbolic Cylinder
 - **c**. Hyperboloid of 1 sheet
 - **d**. Hyperboloid of 2 sheets
 - e. Cone

- **8**. Find the point where the line (x,y,z) = (1+3t,2+2t,3+t) intersects the plane 2x-y+z=13. The sum of the components is:
 - **a**. -6
 - **b**. 6
 - **c**. 12
 - **d**. 18
 - e. No intersection. They are parallel.

- **9**. Find the plane through the point P = (0,5,3) with tangent vectors $\vec{u} = \langle 2,1,3 \rangle$ and $\vec{v} = \langle -1,2,-2 \rangle$. Its *z*-intercept is:
 - **a**. z = 5
 - **b**. z = 10
 - **c**. z = 20
 - **d**. z = 2
 - **e**. z = 4

Work Out: (Points indicated. Part credit possible. Show all work.)

- **10**. (36 points) For the curve $\vec{r}(t) = \langle t, 2e^t, e^{2t} \rangle$ compute each of the following:
 - **a**. (6 pts) The velocity \vec{v}

 $\vec{v} = \underline{\hspace{1cm}}$

b. (6 pts) The speed $\frac{ds}{dt}$ (Simplify!)

 $\frac{ds}{dt} =$

c. (6 pts) The tangential acceleration a_T

 $a_T = \underline{\hspace{1cm}}$

d. (6 pts) The length of this curve between (0,2,1) and $(1,2e,e^2)$

L = _____

e. (6 pts) The mass of a wire in the shape of this curve between (0,2,1) and $(1,2e,e^2)$ if the linear mass density is $\delta = yz$.

M =

f. (6 pts) The work done to move a bead along of a wire in the shape of this curve between (0,2,1) and $(1,2e,e^2)$ by the force $\vec{F} = \langle 0,z,y \rangle$.

 $W = \underline{\hspace{1cm}}$

11. (15 points) Consider the two straight lines:

$$L_1: (x,y,z) = (2+t,3,4+2t)$$

$$L_2$$
: $(x,y,z) = (1,2+t,3-2t)$

Are they parallel or skew or do they intersect? If they intersect, find the point of intersection.