Name \qquad
MATH 221
Section 504
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

$1-9$	$/ 54$	11	$/ 20$
10	$/ 5$	12	$/ 25$
		Total	$/ 104$

1. Find the equation of the plane tangent to $z=x^{2} y^{2}+x y^{2}$ at the point $(x, y)=(1,2)$.

Its z-intercept is:
a. $c=20$
b. $c=8$
c. $c=-8$
d. $c=-16$
e. $c=-20$
2. Use differentials to estimate the volume of metal needed to make a cylindrical tin can with lids if the radius is $r=5 \mathrm{~cm}$ and the height is $h=6 \mathrm{~cm}$ and the metal has thickness .02 cm ?
a. 200π
b. 4π
c. 105π
d. 2.2π
e. 2.6π
3. At the right is a tree diagram showing f as a function of x, y and z which are functions of u, v and w which are functions of r, s and t as indicated.
Below are values of a bunch partial derivatives.
Use this information to compute $\frac{\partial f}{\partial s}$.

$$
\begin{array}{llllll}
\frac{\partial f}{\partial x}=2 & \frac{\partial f}{\partial y}=3 & \frac{\partial f}{\partial z}=4 & & \\
\frac{\partial x}{\partial u}=5 & \frac{\partial x}{\partial v}=6 & \frac{\partial y}{\partial v}=7 & \frac{\partial y}{\partial w}=8 & \frac{\partial z}{\partial u}=9 & \frac{\partial z}{\partial w}=10 \\
\frac{\partial u}{\partial r}=6 & \frac{\partial u}{\partial s}=5 & \frac{\partial v}{\partial r}=4 & \frac{\partial v}{\partial t}=3 & \frac{\partial w}{\partial s}=2 & \frac{\partial w}{\partial t}=1
\end{array}
$$

a. 163
b. 212
c. 358
d. 396
e. 408
4. The point $(x, y)=(1,2)$ is a critical point of the function $f=8 x^{3}+y^{3}-12 x y$. Use the $2^{\text {nd }}$ Derivative Test to classify it as:
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. The $2^{\text {nd }}$ Derivative Test FAILS.
5. If x, y and z are related by $x \cos y+z \sin y=3$. Find $\frac{\partial z}{\partial x}$ at the point $(x, y, z)=\left(3, \frac{\pi}{3}, \sqrt{3}\right)$.
a. $\frac{1}{\sqrt{3}}$
b. $\frac{-1}{\sqrt{3}}$
c. $\sqrt{3}$
d. $-\sqrt{3}$
e. $\frac{1}{3}$
6. If x, y and z are related by $x \cos y+z \sin y=3$. Find $\frac{\partial z}{\partial t}$ at the instant when:

$$
(x, y, z)=\left(3, \frac{\pi}{3}, \sqrt{3}\right) \quad \frac{d x}{d t}=\sqrt{3} \quad \frac{d y}{d t}=1
$$

a. 1
b. 2
c. 3
d. $\sqrt{3}$
e. $\frac{1}{\sqrt{3}}$
7. Find the tangent plane to the graph of the equation $x y-z y=4$ at the point $(x, y, z)=(3,2,1)$. Its z-intercept is:
a. $c=-8$
b. $c=-4$
c. $c=0$
d. $c=4$
e. $c=8$
8. Queen Lena is flying the Centurion Eagle through a deadly Sythion field whose density is $S=x y z \frac{\text { Sythions }}{\text { microlightyear }^{3}}$. The top speed of the Centurion Eagle is $14 \frac{\text { microlightyears }}{\text { lightyear }}$. If Lena is located at the point $(x, y, z)=(1,2,3)$, what should her velocity be to decrease the Sythion density as fast as possible?
a. $\langle 6,3,2\rangle$
b. $\langle-84,-42,-28\rangle$
c. $\langle-6,-3,-2\rangle$
d. $\langle 12,6,4\rangle$
e. $\langle-12,-6,-4\rangle$
9. Consider the limit: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{3}+y^{6}}$. Which of the following directions of approach gives a different value of the limit?
a. Non-vertical line: $y=m x$ and $x \rightarrow 0$
b. The y-axis: $x=0$ and $y \rightarrow 0$
c. The parabola: $x=y^{2}$ and $y \rightarrow 0$
d. The parabola: $y=x^{2}$ and $x \rightarrow 0$
e. None of these. They all give the same limit.
10. (5 points) Here is the plot of a vector field \vec{F} in \mathbb{R}^{2}.

Shade in the region where $\vec{\nabla} \cdot \vec{F}>0$. Explain why.

11. (20 points) Find a scalar potential, f, for $\vec{F}=\left\langle y z^{2}-2 x z, x z^{2}-3 y^{2} z, 2 x y z-x^{2}-y^{3}+2 z\right\rangle$ or show one does not exist. Explain all steps neatly and clearly.
12. (25 points) Find the largest and smallest values of the function $f(x, y, z)=x y z$ on the ellipsoid $x^{2}+4 y^{2}+16 z^{2}=48$.

