Name \qquad UIN \qquad

MATH 221
Exam 2
Fall 2021
Sections 504/505
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

$1-8$	$/ 48$	10	$/ 20+5$
9	$/ 15$	11	$/ 15$
		Total	$/ 108$

1. Find the equation of the plane tangent to $z=x^{2} y^{4}-\frac{x}{y} \quad$ at $\quad(x, y)=(2,1)$.

Then find the z-intercept.

$$
z=
$$

2. Find the plane tangent to the hyperboloid $4 x^{2}+9 y^{2}-36 z^{2}=36$ at the point $(x, y, z)=(3,2,1)$. Write the plane in the form where the right side is 1 .
\qquad $x+$ \qquad $y+$ \qquad $z=1$
3. A weather balloon takes measurements at the point $(x, y, z)=(5,8,3) \mathrm{km}$.

It finds the barometric pressure is $P=1.05 \mathrm{~atm}$ and its gradient is $\vec{\nabla} P=\langle .02,-.03, .04\rangle$.
Estimate the pressure at $(x, y, z)=(4.7,7.8,3.2) \mathrm{km}$.

$$
P(4.7,7.8,3.2) \approx
$$

\qquad
4. The Ideal Gas Law says the Pressure, P, Density, δ, and Temperature, $\quad T$, are related by $P=k \delta T$.
A particular sample of ideal gas has $k=2$.
At a certain point the pressure, density and temperature are

$$
P=4 \quad \delta=.01 \quad T=200
$$

The gradients of the density and temperature are

$$
\vec{\nabla} \delta=\langle .001, .002, .003\rangle \quad \vec{\nabla} T=\langle 3,2,1\rangle
$$

Find the gradient of the pressure.

Ideal Gas Law Tree Diagram

Hint: Compute each component separately using the chain rule and the tree diagram at the right.
a. $\vec{\nabla} P=\langle .46, .48,1.22\rangle$
b. $\vec{\nabla} P=\langle .64, .48,1.22\rangle$
c. $\vec{\nabla} P=\langle .46, .84,1.22\rangle$
d. $\vec{\nabla} P=\langle .64, .84,1.22\rangle$
e. $\vec{\nabla} P=\langle .46, .48,2.11\rangle$
f. $\vec{\nabla} P=\langle .64, .48,2.11\rangle$
g. $\vec{\nabla} P=\langle .46, .84,2.11\rangle$
h. $\vec{\nabla} P=\langle .64, .84,2.11\rangle$
5. The point $(x, y)=(0,2)$ is a critical point of the function $f(x, y)=y^{4}-32 y+8 x^{2} y$. Use the Second Derivative Test to classify the point or say the test fails.
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test FAILS
6. The contour plot of a function f is shown. Which of the following is the plot of its gradient, $\vec{\nabla} f$?

a.

C.

b.

d.

7. Ham Duet is flying the Centurion Eagle through a nebula where the density of cloaking sparkles is $\delta=y z+x z+x y$. If Ham's current position is $P=(1,1,3)$, find the rate of change of the density in the direction toward the point $Q=(2,3,1)$.

$$
\nabla_{\hat{w}} \delta=
$$

8. Ham Duet is flying the Centurion Eagle through a nebula where the density of cloaking sparkles is $\delta=y z+x z+x y$. If Ham's current position is $P=(1,1,3)$, in what unit vector direction should he travel to increase the cloaking sparkles as fast as possible?

$$
\hat{u}=\langle\square, \square, \square
$$

Work Out: (Points indicated. Part credit possible. Show all work.)
9. (15 points) Consider the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$.

Determine the value of the limit or show the limit does not exist.
10. (20 points +5 pts extra credit) Find the largest value of $f=x y z$ on the ellipsoid $\frac{x^{2}}{16}+\frac{y^{2}}{4}+z^{2}=3$.

NOTE: Solve by either Eliminating a Variable or by Lagrange Multipliers.
Extra Credit for solving by both methods.
Draw a line across your paper to clearly separate the two solutions.
HINT: When Eliminating a Variable, maximize $F=f^{2}=x^{2} y^{2} z^{2}$.
11. (15 points) For each vector field, calculate its divergence and curl. Say if it has a scalar potential or a vector potential. Find the scalar potential if it exists. Do NOT find the vector potential.
a. $\vec{F}=\left\langle-x y^{2}, x^{2} y, y^{2} z-x^{2} z\right\rangle$
$\vec{\nabla} \cdot \vec{F}=$
$\vec{\nabla} \times \vec{F}=$
Has a scalar potential? Yes No Has a vector potential? Yes No

Find a scalar potential:
b. $\vec{G}=\left\langle 2 x z, 2 y z, x^{2}+y^{2}+2 z\right\rangle$
$\vec{\nabla} \cdot \vec{G}=$
$\vec{\nabla} \times \vec{G}=$

Has a scalar potential: Yes No Has a vector potential: Yes No
Find a scalar potential:

$$
g=
$$

\qquad

