| Name                                                                    | _UIN                   |                  |     |     |       |      |
|-------------------------------------------------------------------------|------------------------|------------------|-----|-----|-------|------|
|                                                                         |                        |                  | 1-9 | /45 | 11    | /20  |
| MATH 221                                                                | Exam 3                 | Fall 2021        |     |     |       |      |
| Sections 504/505 (circle one)                                           |                        | P. Yasskin       | 10  | /20 | 12    | /20  |
| Multiple Choice: (5 points each. No part credit.)                       |                        |                  |     |     | Total | /105 |
| 1. Compute $I = \int_{0}^{4} \int_{0}^{3} \int_{0}^{2} x^{3}y^{2}z  dz$ | <i>dy dx</i> . Simplit | y to an integer. |     |     |       |      |

**2**. Find the mass of the triangle with vertices (0,-3), (0,3) and (3,0) if the density is  $\delta = x$ . Simplify to an integer.

*M* = \_\_\_\_\_

*I* = \_\_\_\_\_

**3**. Find the *x*-component of the center of mass of the triangle with vertices (0,-3), (0,3) and (3,0), if the density is  $\delta = x$ . Simplify to a rational number. Enter  $\frac{7}{5}$  as 7/5.

*x* = \_\_\_\_\_

**4**. Estimate the double integral  $I = \iint_R x^2 y \, dA$  over the rectangle  $[0,4] \times [0,8]$  using a Riemann sum with 4 small rectangles which are 2 wide and 4 high with evaluation points at the center of each small rectangle.

*I* ≈ \_\_\_\_\_

**5**. Compute the integral  $\int_{0}^{1} \int_{\sqrt{y}}^{1} x(x^{4}+1)^{24} dx dy$ . HINT: Reverse the order of integration.

| <b>a</b> . | $\frac{1}{24}(2^{23}-1)$ | <b>e</b> . $\frac{1}{6}(2^{23}-1)$  | i. $\frac{1}{96}(2^{23}-1)$          |
|------------|--------------------------|-------------------------------------|--------------------------------------|
| b.         | $\frac{1}{25}(2^{25}-1)$ | <b>f</b> . $\frac{4}{25}(2^{25}-1)$ | <b>j</b> . $\frac{1}{100}(2^{25}-1)$ |
| <b>C</b> . | $\frac{1}{96}(2^{95}-1)$ | <b>g</b> . $\frac{1}{24}(2^{95}-1)$ | <b>k</b> . $\frac{1}{384}(2^{95}-1)$ |
| d.         | $\frac{1}{97}(2^{97}-1)$ | <b>h</b> . $\frac{4}{97}(2^{97}-1)$ | I. $\frac{1}{388}(2^{97}-1)$         |

6. The graph of  $r = \sin(2\theta)$  is the 4-leaf clover. Find the area of the leaf in the first quadrant. Enter  $\frac{5\pi}{6}$  as 5pi/6.

*A* = \_\_\_\_\_



7. Find the average value of the function f(x,y,z) = z over the solid *P* below the paraboloid  $z = 9 - x^2 - y^2$  and above the *xy*-plane. Simplify completely. HINT: Don't use rectangular coordinates.

*f*<sub>ave</sub> = \_\_\_\_\_

8. Find the *z*-component of the centriod of the  $\frac{1}{8}$  of a sphere of radius 4 centered at the origin in the first octant (i.e.  $x \ge 0$ ,  $y \ge 0$  and  $z \ge 0$ ).

*z* = \_\_\_\_\_

**9**. Compute  $\iint_C \vec{\nabla} \cdot \vec{F} dS$  over the cylindrical surface  $x^2 + y^2 = 4$  for  $0 \le z \le 3$  if  $\vec{F} = \langle xz, yz, z^2 \rangle$ . You can parametrize the surface as  $\vec{R}(\theta, z) = \langle 2\cos\theta, 2\sin\theta, z \rangle$ .

 $\iint_C \vec{\nabla} \cdot \vec{F} \, dS =$ 



**11.** (20 points) Compute the surface integral  $\iint_{S} \vec{F} \cdot d\vec{S}$  for the vector field  $\vec{F} = \langle xz, yz, z^2 \rangle$  over the hemisphere  $x^2 + y^2 + z^2 = 9$  for  $z \ge 0$  with the outward orientation. The hemisphere may be parametrized as  $\vec{R} = \langle 3 \sin \phi \cos \theta, 3 \sin \phi \sin \theta, 3 \cos \phi \rangle$ . HINT: Successively find  $\vec{e}_{\phi}$ ,  $\vec{e}_{\theta}$ ,  $\vec{N}$ ,  $\vec{F} \Big|_{\vec{R}}$  and  $\vec{F} \cdot \vec{N}$ .

12. (20 points) A spiral ramp may be parametrized by  $\vec{R}(r,\theta) = \langle r\cos\theta, r\sin\theta, \theta \rangle$ Find the mass of the spiral ramp for  $1 \le r \le 2$ 

and two turns, i.e.  $0 \le \theta \le 4\pi$ , if the surface density is given by  $\delta = \sqrt{x^2 + y^2}$ .

