Name \qquad UIN \qquad
MATH 221
Exam $3 \quad$ Fall 2021
Sections 504/505 (circle one)
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-9$	$/ 45$	11	$/ 20$
10	$/ 20$	12	$/ 20$
		Total	$/ 105$

1. Compute $I=\int_{0}^{4} \int_{0}^{3} \int_{0}^{2} x^{3} y^{2} z d z d y d x$. Simplify to an integer.
$I=$ \qquad
2. Find the mass of the triangle with vertices $(0,-3),(0,3)$ and $(3,0)$ if the density is $\delta=x$. Simplify to an integer.
$M=$ \qquad
3. Find the x-component of the center of mass of the triangle with vertices $(0,-3),(0,3)$ and $(3,0)$, if the density is $\delta=x$. Simplify to a rational number. Enter $\frac{7}{5}$ as 7/5. $\bar{x}=$ \qquad
4. Estimate the double integral $I=\iint_{R} x^{2} y d A$ over the rectangle $[0,4] \times[0,8]$ using a Riemann sum with 4 small rectangles which are 2 wide and 4 high with evaluation points at the center of each small rectangle.
$I \approx$ \qquad
5. Compute the integral $\int_{0}^{1} \int_{\sqrt{y}}^{1} x\left(x^{4}+1\right)^{24} d x d y$.

HINT: Reverse the order of integration.
a. $\frac{1}{24}\left(2^{23}-1\right)$
b. $\frac{1}{25}\left(2^{25}-1\right)$
c. $\frac{1}{96}\left(2^{95}-1\right)$
d. $\frac{1}{97}\left(2^{97}-1\right)$
e. $\frac{1}{6}\left(2^{23}-1\right)$
f. $\frac{4}{25}\left(2^{25}-1\right)$
g. $\frac{1}{24}\left(2^{95}-1\right)$
h. $\frac{4}{97}\left(2^{97}-1\right)$
i. $\frac{1}{96}\left(2^{23}-1\right)$
j. $\frac{1}{100}\left(2^{25}-1\right)$
k. $\frac{1}{384}\left(2^{95}-1\right)$
I. $\frac{1}{388}\left(2^{97}-1\right)$
6. The graph of $r=\sin (2 \theta)$ is the 4-leaf clover.

Find the area of the leaf in the first quadrant.
Enter $\frac{5 \pi}{6}$ as $5 \mathrm{pi} / 6$.
$A=$

7. Find the average value of the function $f(x, y, z)=z$ over the solid P below the paraboloid $z=9-x^{2}-y^{2}$ and above the $x y$-plane. Simplify completely. HINT: Don't use rectangular coordinates.
$f_{\text {ave }}=$ \qquad
8. Find the z-component of the centriod of the $\frac{1}{8}$ of a sphere of radius 4 centered at the origin in the first octant (i.e. $x \geq 0, y \geq 0$ and $z \geq 0$).

$$
\bar{z}=
$$

9. Compute $\iint_{C} \vec{\nabla} \cdot \vec{F} d S$ over the cylindrical surface $x^{2}+y^{2}=4$ for $0 \leq z \leq 3$ if $\vec{F}=\left\langle x z, y z, z^{2}\right\rangle$. You can parametrize the surface as $\vec{R}(\theta, z)=\langle 2 \cos \theta, 2 \sin \theta, z\rangle$.
$\iint_{C} \vec{\nabla} \cdot \vec{F} d S=$

Work Out: (Points indicated. Part credit possible. Show all work.)
10. (20 points) Compute $\iint_{D} x^{3} y^{2} d A$ over the diamond shaped region in the first quadrant bounded by the curves

$$
y=\frac{2}{x} \quad y=\frac{4}{x} \quad y=\frac{1}{x^{2}} \quad y=\frac{3}{x^{2}}
$$

HINT: Let $u=x y$ and $v=x^{2} y$. What are $\frac{u}{v}$ and $\frac{u^{2}}{v}$?

11. (20 points) Compute the surface integral $\iint_{S} \vec{F} \cdot \overrightarrow{d S}$ for the vector field $\vec{F}=\left\langle x z, y z, z^{2}\right\rangle$ over the hemisphere $x^{2}+y^{2}+z^{2}=9$ for $z \geq 0$ with the outward orientation. The hemisphere may be parametrized as $\vec{R}=\langle 3 \sin \phi \cos \theta, 3 \sin \phi \sin \theta, 3 \cos \phi\rangle$. HINT: Successively find $\vec{e}_{\phi}, \quad \vec{e}_{\theta}, \vec{N},\left.\vec{F}\right|_{\vec{R}}$ and $\vec{F} \cdot \vec{N}$.
12. (20 points) A spiral ramp may be parametrized by $\vec{R}(r, \theta)=\langle r \cos \theta, r \sin \theta, \theta\rangle$
Find the mass of the spiral ramp for $1 \leq r \leq 2$ and two turns, i.e. $0 \leq \theta \leq 4 \pi$, if the surface density is given by $\delta=\sqrt{x^{2}+y^{2}}$.

