Name		_				
MATH 221	Exam 1	Spring 2023	1-9	/54	11	/25
Section 501		P. Yasskin	10	/15	12	/10
Multiple Choice: (6 points each. No part credit.)					Total	/104

- **1**. Consider the sphere which has a diameter with endpoints P = (6, -3, -5) and Q = (-2, 5, -1). Find the center.
 - **a**. (-4,4,2)
 - **b**. (4, -4, -2)
 - **c**. (2, 1, -3)
 - **d**. (-2, -1, 3)
 - e. None of these
- **2**. Consider the sphere which has a diameter with endpoints P = (6, -3, -5) and Q = (-2, 5, -1). Find the radius.
 - **a**. 6
 - **b**. 12
 - **c**. 36
 - **d**. 144
 - e. None of these
- **3**. If \vec{u} points Up and \vec{v} points NorthWest, where does $\vec{u} \times \vec{v}$ point?
 - a. Down
 - **b**. SouthWest
 - c. SouthEast
 - d. NorthEast
 - e. South

- 4. The figure shows the contour plot of a function *f*(*x*,*y*). The level sets are labeled by the values of *f*. Which point is a local maximum?
 - **a**. (7,0)
 - b. (15,-15)
 - c. (-7,-7)
 - d. (-7,7)
 - **e**. (0,0)

- 5. Consider the contour plot in the previous problem. Which point is a saddle point?
 - **a**. (7,0)
 - **b**. (15,-15)
 - **c**. (−7,−7)
 - **d**. (-7,7)
 - **e**. (0,0)
- **6**. Write the vector $\vec{u} = \langle 7, 2, 3 \rangle$ as the sum of a vector \vec{p} which is parallel to $\vec{v} = \langle 3, 2, 1 \rangle$ and a vector \vec{q} which is perpenducular to \vec{v} . Then $\vec{q} =$
 - **a**. (1, -2, 1)
 - **b**. $\langle -2, 2, 2 \rangle$
 - **c**. $\langle 2, -3, 0 \rangle$
 - $\textbf{d}. \hspace{0.2cm} \langle -2,4,-2\rangle$
 - e. $\langle 1, -1, -1 \rangle$

7. Find a vector perpendicular to the plane containing the points

A = (2,0,4), B = (2,1,3) and C = (3,1,4).

- **a**. (1, 1, -1)
- **b**. $\langle -1, -1, -1 \rangle$
- **c**. $\langle 1, 1, 1 \rangle$
- **d**. $\langle -1, 1, -1 \rangle$
- e. $\langle 1, -1, -1 \rangle$

8. Write (4,1,-4) as a linear combination of (2,3,3) and (1,-1,-2) or determine that it is impossible.

In other words, find a and b so that

(4, 1, -4) = a(2, 3, 3) + b(1, -1, -2)

- Then a + 2b =
- **a**. 3
- **b**. 5
- **c**. 8
- **d**. 12
- e. Impossible

- **9**. Classify the surface: $2x^2 8x y^2 + 6y + z^2 = 1$.
 - a. Hyperbolic Paraboloid
 - b. Hyperbolic Cylinder
 - **c**. Hyperboloid of 1 sheet
 - d. Hyperboloid of 2 sheets
 - e. Cone

10. (15 points) Find the point where the line (x,y,z) = (2-t, 1+2t, 3-t) intersects the plane 3x + 2y - 3z = 11.

(*x*,*y*,*z*) =_____

- **11**. (25 points) For the curve $\vec{r}(t) = \langle e^{2t}, 2e^t, t \rangle$ compute each of the following:
 - **a**. (5 pts) The velocity \vec{v}

b. (5 pts) The speed $\frac{ds}{dt}$ (Simplify!)

- **c**. (5 pts) The tangential acceleration a_T
- $a_T =$ _____ d. (5 pts) The length of this curve between (1,2,0) and (e^2 ,2e,1).

L = _____

v = _____

 $\frac{ds}{dt} =$ _____

e. (5 pts) The unit binormal vector \hat{B}

12. (10 points) The volume of a pyramid is

 $V = \frac{1}{3}BH$

where *B* is the area of the base and *H* is the height. Derive a formula for the volume of the triangular pyramid with edge vectors \vec{u} , \vec{v} and \vec{w} . Your formula should involve the dot, cross and/or triple product of \vec{u} , \vec{v} and \vec{w} . Your derivation should explain all steps like the book does for the area of a triangle or the volume of a parallelepiped. Use sentences.

