Name \qquad
MATH 221 Exam $1 \quad$ Spring 2023
Section 501
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

$1-9$	$/ 54$	11	$/ 25$
10	$/ 15$	12	$/ 10$
		Total	$/ 104$

1. Consider the sphere which has a diameter with endpoints $P=(6 .-3,-5)$ and $Q=(-2,5,-1)$. Find the center.
a. $(-4,4,2)$
b. $(4,-4,-2)$
c. $(2,1,-3)$
d. $(-2,-1,3)$
e. None of these
2. Consider the sphere which has a diameter with endpoints $P=(6 .-3,-5)$ and $Q=(-2,5,-1)$. Find the radius.
a. 6
b. 12
c. 36
d. 144
e. None of these
3. If \vec{u} points Up and \vec{v} points NorthWest, where does $\vec{u} \times \vec{v}$ point?
a. Down
b. SouthWest
c. SouthEast
d. NorthEast
e. South
4. The figure shows the contour plot of a function $f(x, y)$.

The level sets are labeled by the values of f. Which point is a local maximum?
a. $(7,0)$
b. $(15,-15)$
c. $(-7,-7)$
d. $(-7,7)$
e. $(0,0)$

5. Consider the contour plot in the previous problem. Which point is a saddle point?
a. $(7,0)$
b. $(15,-15)$
c. $(-7,-7)$
d. $(-7,7)$
e. $(0,0)$
6. Write the vector $\vec{u}=\langle 7,2,3\rangle$ as the sum of a vector \vec{p} which is parallel to $\vec{v}=\langle 3,2,1\rangle$ and a vector \vec{q} which is perpenducular to \vec{v}. Then $\vec{q}=$
a. $\langle 1,-2,1\rangle$
b. $\langle-2,2,2\rangle$
c. $\langle 2,-3,0\rangle$
d. $\langle-2,4,-2\rangle$
e. $\langle 1,-1,-1\rangle$
7. Find a vector perpendicular to the plane containing the points

$$
A=(2,0,4), \quad B=(2,1,3) \quad \text { and } \quad C=(3,1,4) .
$$

a. $\langle 1,1,-1\rangle$
b. $\langle-1,-1,-1\rangle$
c. $\langle 1,1,1\rangle$
d. $\langle-1,1,-1\rangle$
e. $\langle 1,-1,-1\rangle$
8. Write $(4,1,-4)$ as a linear combination of $(2,3,3)$ and $(1,-1,-2)$ or determine that it is impossible.
In other words, find a and b so that

$$
(4,1,-4)=a(2,3,3)+b(1,-1,-2)
$$

Then $a+2 b=$
a. 3
b. 5
c. 8
d. 12
e. Impossible
9. Classify the surface: $2 x^{2}-8 x-y^{2}+6 y+z^{2}=1$.
a. Hyperbolic Paraboloid
b. Hyperbolic Cylinder
c. Hyperboloid of 1 sheet
d. Hyperboloid of 2 sheets
e. Cone

Work Out: (Points indicated. Part credit possible. Show all work.)
10. (15 points) Find the point where the line $(x, y, z)=(2-t, 1+2 t, 3-t)$ intersects the plane $3 x+2 y-3 z=11$.

$$
(x, y, z)=
$$

11. (25 points) For the curve $\vec{r}(t)=\left\langle e^{2 t}, 2 e^{t}, t\right\rangle$ compute each of the following:
a. (5 pts) The velocity \vec{v}

$$
\vec{v}=
$$

b. (5 pts) The speed $\frac{d s}{d t} \quad$ (Simplify!)

$$
\frac{d s}{d t}=
$$

c. (5 pts) The tangential acceleration a_{T}

$$
a_{T}=
$$

\qquad
d. $(5 \mathrm{pts})$ The length of this curve between $(1,2,0)$ and $\left(e^{2}, 2 e, 1\right)$.
\qquad
$L=$
e. (5 pts) The unit binormal vector \hat{B}
$\hat{B}=$ \qquad
12. (10 points) The volume of a pyramid is

$$
V=\frac{1}{3} B H
$$

where B is the area of the base and H is the height. Derive a formula for the volume of the triangular pyramid with edge vectors \vec{u}, \vec{v} and \vec{w}. Your formula should involve the dot, cross and/or triple product of \vec{u}, \vec{v} and \vec{w}.
Your derivation should explain all steps like the book does for the area of a triangle or the volume of a parallelepiped. Use sentences.

