Name.

MATH 221	Exam 2	Spring 2023		1-9	/54	12	/14	
Section 501		P. Yasskin		10	/12	13	/12	
Multiple Choice: (6 points each. No part credit.)			11	/12	Total	/104		

1. The volume of a cone is $V = \frac{1}{3}\pi r^2 h$. Its radius is measured to be $r = 2 \pm .02$ cm and its height is measured to be $h = 6 \pm .03$ cm. Using the linear approximation, we compute $V = 8\pi \pm \Delta V$ where $\Delta V =$

- **a**. 0.6π
- **b**. 0.4π
- **c**. 0.3π
- **d**. 0.2π
- **e**. 0.1π

2. The function $f = xy + \frac{3}{x} - \frac{9}{y}$ has a critical point at (x,y) = (-1,3).

Use the Second Derivative Test to classify this critical point.

- a. Local Minimum
- b. Local Maximum
- c. Inflection Point
- d. Saddle Point
- e. Test Fails

- **3**. Find the plane tangent to the graph of $z = xe^{y}$ at the point (3,0). Its *z*-intercept is
 - **a**. –*e*
 - **b**. -2
 - **c**. 0
 - **d**. 2
 - **e**. *e*

- **4**. Find the plane tangent to the graph of $xz^3 + zy^2 + yx^4 = 8$ at the point (1,0,2). Its *z*-intercept is
 - **a**. $\frac{1}{3}$
 - **b**. $\frac{2}{3}$

 - **c**. $\frac{4}{3}$
 - **d**. $\frac{8}{3}$
 - **e**. 32

5. Sidney says the Hessian of $f(x,y,z) = x \sin y + y \cos x$ is

$$\begin{pmatrix} f_{xx} & f_{yx} \\ f_{xy} & f_{yy} \end{pmatrix} = \begin{pmatrix} -y\cos x & \sin x - \cos y \\ \cos y - \sin x & -x\sin y \end{pmatrix}$$

Which entry is wrong?

- **a**. f_{xx}
- **b**. f_{yx}
- **c**. f_{xy}
- **d**. f_{yy}
- e. None of them.

6. If $\vec{F} = (yz, -xz, z^2)$, compute $\vec{F} \cdot \vec{\nabla} \times \vec{F}$. a. $-2z^3$ b. z^3 c. $z^3 + xyz$ d. $-2z^3 + 2xyz$ e. 0

- 7. Find the point (x,y) at which the divergence of $\vec{F} = \langle 6x^2 xy^2, -y^2 2x^2y \rangle$ is a maximum.
 - **a**. (3,1)
 - **b**. (-3,1)
 - **c**. (-3,-1)
 - **d**. (3,-1)
 - **e**. (0,0)

- **8**. Find the mass of a wire in the shape of the semi-circle $\vec{r}(\theta) = (4\cos\theta, 4\sin\theta)$ for $0 \le \theta \le \pi$ if the linear density is $\delta = y$.
 - **a**. 2π
 - **b**. 8π
 - **c**. 8
 - **d**. 16
 - **e**. 32

- **9**. A bead is pushed along a wire in the shape of the twisted cubic $\vec{r}(t) = (t^3, t^2, t)$ by the force $\vec{F} = \langle z^3, yz^2, xz^2 \rangle$ from (1,1,1) to (8,4,2). Find the work done.
 - **a**. 186
 - **b**. $\frac{384}{7}$
 - **c**. $\frac{381}{7}$

 - **d**. 63
 - **e**. 64

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (12 points) Find the point P = (x, y, z) on the plane x + y - z = 2 which is closest to the point Q = (1, 0, 2). Find the distance from P to Q.

11. (12 points) As Duke Skywater flies the Centurion Eagle through the galaxy he wants to maximize the Power of the Force which is given by $F = \frac{1}{D}$ where *D* is the dark matter density given by $D = x^3 + y^3 + z^3$. If his current position is $\vec{r} = (2, 1, 1)$ and his current velocity is $\vec{v} = (0.5, -0.2, -0.8)$, what is the current rate of change of the Power of the Force, $\frac{dF}{dt}$? (Plug in numbers but you don't need to simplify.)

 $\frac{dF}{dt} =$

12. (14 points) Determine whether or not each of these limits exists. If it exists, find its value.

a. $\lim_{(x,y)\to(0,0)} \frac{3x^2y^2}{x^6+3y^3}$

 \bigcirc Converges to _____

○ Diverges Be sure to say why!

b. $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$

 \bigcirc Converges to _____

○ Diverges

Be sure to say why!

13. (12 points) Find a scalar potential, f, for the vector field $\vec{F} = \langle \cos y, \sin z - x \sin y, 2z + y \cos z \rangle$. (You MUST SHOW your derivation.)