Name_		
MATH 221	Exam 3	Spring 2023
Section 501		P. Yasskin

1	$/ 15$	4	$/ 20$
2	$/ 15$	5	$/ 20$
3	$/ 15$	6	$/ 20$
		Total	$/ 105$

Work Out: (Points indicated. Part credit possible. Show all work.)

1. (15 points) Given the vector field $\vec{F}(x, y, z)=\left\langle x z^{2}, y z^{2}, z^{3}\right\rangle$, compute the triple integral $\iiint \vec{\nabla} \cdot \vec{F} d V$ of its divergence over the solid between $y=x^{2}$ and $y=2 x$ for $0 \leq z \leq 3$.
2. (15 points) Given the function $f(x, y, z)=x y+3 z$ compute the vector line integral $\int_{A}^{B} \vec{\nabla} f \cdot d \vec{s}$ along the twisted cubic $\vec{r}(t)=\left(t, t^{2}, \frac{2}{3} t^{3}\right)$ between $A=\left(1,1, \frac{2}{3}\right)$ and $B=(3,9,18)$.
3. (15 points) Compute $\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^{2}}} e^{-x^{2}-y^{2}} d y d x$ Hint: Change coordinates.

4. (20 points) Compute $\iint_{D} x y^{2} d A$ over the diamond shaped region in the first quadrant bounded by the curves

$$
x=\frac{4}{y^{2}} \quad x=\frac{9}{y^{2}} \quad y=\frac{2}{x} \quad y=\frac{4}{x}
$$

HINT: Let $u=x y^{2}$ and $v=x y$. What are $\frac{v^{2}}{u}$ and $\frac{u}{v}$?

5. (20 points) Consider the solid cylinder $x^{2}+y^{2} \leq 4$ for $2 \leq z \leq 6$ with density is $\delta=\left(x^{2}+y^{2}\right) z$.
a. Find the mass of the cylinder.
b. Find the center of mass of the cylinder.
6. (20 points) Given the vector field $\vec{F}(x, y, z)=\left\langle y z^{2},-x z^{2}, z^{3}\right\rangle$ compute the vector surface integral $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ along the side surface of the cylinder $x^{2}+y^{2}=4$ for $2 \leq z \leq 6$, oriented outward. (There are no ends on the cylinder.) Parametrize the cylinder by $\vec{R}(z, \theta)=(2 \cos \theta, 2 \sin \theta, z)$.

