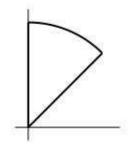
Name				1	/15	4	/20
MATH 221	Exam 3	– Spring 2023 P. Yasskin		2	/15	5	/20
Section 501			:	3	/15	6	/20
						Total	/105

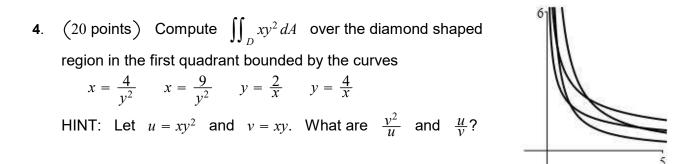
Work Out: (Points indicated. Part credit possible. Show all work.)

1. (15 points) Given the vector field $\vec{F}(x,y,z) = \langle xz^2, yz^2, z^3 \rangle$, compute the triple integral $\iiint \vec{\nabla} \cdot \vec{F} dV$ of its divergence over the solid between $y = x^2$ and y = 2x for $0 \le z \le 3$.

2. (15 points) Given the function f(x, y, z) = xy + 3z compute the vector line integral $\int_{A}^{B} \vec{\nabla} f \cdot d\vec{s}$ along the twisted cubic $\vec{r}(t) = \left(t, t^2, \frac{2}{3}t^3\right)$ between $A = \left(1, 1, \frac{2}{3}\right)$ and B = (3, 9, 18).

3. (15 points) Compute $\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^2}} e^{-x^2-y^2} dy dx$ Hint: Change coordinates.





- **5**. (20 points) Consider the solid cylinder $x^2 + y^2 \le 4$ for $2 \le z \le 6$ with density is $\delta = (x^2 + y^2)z$.
 - **a**. Find the mass of the cylinder.

b. Find the center of mass of the cylinder.

6. (20 points) Given the vector field $\vec{F}(x,y,z) = \langle yz^2, -xz^2, z^3 \rangle$ compute the vector surface integral $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ along the side surface of the cylinder $x^2 + y^2 = 4$ for $2 \le z \le 6$, oriented outward. (There are no ends on the cylinder.) Parametrize the cylinder by $\vec{R}(z,\theta) = (2\cos\theta, 2\sin\theta, z)$.