Name \qquad
MATH 221
Final Spring 2023
Section 501
P. Yasskin

Multiple Choice: (4 points each. No part credit.)

$1-9$	$/ 36$	12	$/ 15$
10	$/ 15$	13	$/ 25$
11	$/ 15$	Total	$/ 106$

1. Find the angle between the line $\vec{r}(t)=(3+2 t, 2,5+2 t)$ and the normal to the plane $x+y+2 z=4$.
a. $\frac{\pi}{6}$
b. $\frac{\pi}{4}$
c. $\frac{\pi}{3}$
d. $\frac{\pi}{2}$
e. $\frac{2 \pi}{3}$
2. Find the equation of the plane tangent to $z=x^{2} y+y^{2} x$ at the point $(x, y)=(1,2)$. Which of the following points lies on the tangent plane?
a. $(2,1,19)$
b. $(2,1,9)$
c. $(3,3,17)$
d. $(3,3,21)$
3. Find the plane tangent to the surface $x^{2} z+y^{2} z+x y z=21$ at the point $P=(1,2,3)$.

Find the z-intercept.
a. $z=3$
b. $z=5$
c. $z=7$
d. $z=9$
e. $z=11$
4. The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. A cone currently has radius $r=5 \mathrm{~cm}$ and height $h=8 \mathrm{~cm}$. If the radius decreases at $0.3 \frac{\mathrm{~cm}}{\mathrm{sec}}$ while the volume decreases by $8 \pi \frac{\mathrm{~cm}^{3}}{\mathrm{sec}}$, find the rate at which the height is currently changing. $\frac{d h}{d t}=$
a. $\frac{3}{25} \frac{\mathrm{~cm}}{\mathrm{sec}}$
b. $\frac{48}{25} \frac{\mathrm{~cm}}{\mathrm{sec}}$
c. $-\frac{25}{3} \frac{\mathrm{~cm}}{\mathrm{sec}}$
d. $-\frac{25}{48} \frac{\mathrm{~cm}}{\mathrm{sec}}$
e. $0 \frac{\mathrm{~cm}}{\mathrm{sec}}$
5. The function $f(x, y)=x^{4}-8 x y+\frac{1}{16} y^{4}$ has a critical point at $(2,4)$. Use the Second Derivative Test to classify this critical point.
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test Fails
6. Compute $\int_{0}^{8} \int_{x^{1 / 3}}^{2} \cos \left(y^{4}\right) d y d x$

HINT: Reverse the order of integration.
a. $\frac{1}{4} \sin (4)-\frac{1}{4}$
b. $\frac{1}{4} \sin (64)-\frac{1}{4}$
c. $\frac{1}{4} \sin (64)$
d. $\frac{1}{4} \sin (16)-\frac{1}{4}$
e. $\frac{1}{4} \sin (16)$
7. Consider the parametric surface $\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)$.

Find the normal line at the point $P=\vec{R}\left(\sqrt{2}, \frac{\pi}{4}\right)=(1,1,2)$.
It intersects the $x y$-plane at
a. $(-3,-3,0)$
b. $(-3,-3,4)$
c. $(5,5,0)$
d. $(5,5,4)$
e. $(2 \sqrt{2}, 2 \sqrt{2}, 0)$
8. On Exam 3, you solved the problem:
"Given the function $f(x, y, z)=x y+3 z \quad$ compute the vector line integral $\int_{A}^{B} \vec{\nabla} f \cdot d \vec{s}$ along the twisted cubic $\vec{r}(t)=\left(t, t^{2}, \frac{2}{3} t^{3}\right)$ between $A=\left(1,1, \frac{2}{3}\right)$ and $B=(3,9,18)$. ." You can now do it more easily using a Theorem. Which Theorem?
a. Fundamental Theorem of Calculus for Curves
b. Green's Theoprem
c. 2D Stokes' Theorem
d. Stokes' Theorem
e. Gauss' Theorem
9. Compute the line integral $\oint(3 y+\cos x) d x+(5 x-\sin y) d y$ counterclockwise around the boundary of the region shown consisting of a square and 4 semicircles.

HINT: Use a Theorem.

a. $4+2 \pi$
b. $1+2 \pi$
c. $8+4 \pi$
d. $\pi+2 \pi^{2}$
e. $2 \pi+4 \pi^{2}$

Work Out: (Points indicated. Part credit possible. Show all work.)
10. (15 points) Find the volume of the largest rectangular solid with 3 faces in the coordinate planes and the opposite vertex on the plane $\frac{x}{9}+\frac{y}{6}+\frac{z}{3}=1$.
11. (15 points) Consider the parametric surface $\vec{R}(u, v)=\left(u^{2}, v^{2}, \sqrt{2} u v\right)$
for $0 \leq u \leq 2$ and $0 \leq v \leq 3$.
Find the mass of the surface if the surface density is $\delta=\frac{1}{x+y}$.
HINT: Factor out a $\sqrt{8}$.
12. (15 points) Given the vector field $\vec{F}(x, y, z)=\left\langle y z^{2},-x z^{2}, z^{3}\right\rangle$ compute the vector surface integral $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ along the side surface of the cylinder $x^{2}+y^{2}=4$ for $2 \leq z \leq 6$, oriented outward. (There are no ends on the cylinder.) On Exam 3, you solved this directly.
Now solve it using Stokes' Theorem, using the following steps.
a. Compute the line integral $\int_{z=6} \vec{F} \cdot d \vec{s}$ around the circle $x^{2}+y^{2}=4$ for $z=6$, counterclockwise as seen from above.
The circle may be parametrized by $\vec{r}(\theta)=(2 \cos \theta, 2 \sin \theta, 6)$.

The velocity is $\vec{v}=$

On the circle $\left.\vec{F}\right|_{\vec{r}(\theta)}=$
$\int_{z=6} \vec{F} \cdot d \vec{s}=$
b. Compute the line integral $\int_{z=6} \vec{F} \cdot d \vec{S}$ around the circle $x^{2}+y^{2}=4$ for $z=2$, counterclockwise as seen from above.
The circle may be parametrized by $\vec{r}(\theta)=(2 \cos \theta, 2 \sin \theta, 2)$.

The velocity is $\vec{v}=$

On the circle $\left.\vec{F}\right|_{\vec{r}(\theta)}=$

$$
\int_{z=2} \vec{F} \cdot d \vec{s}=
$$

c. Combine the answers to parts (a) and (b) (justifying your orientations) to find

$$
\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=
$$

13. (25 points) Verify Gauss' Theorem $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot d \vec{S}$ for the vector field $\vec{F}=\left\langle y z^{2}, x z^{2}, z\left(x^{2}+y^{2}\right)\right\rangle$ and the solid cone $\sqrt{x^{2}+y^{2}} \leq z \leq 4$
Be sure to check orientations. Use the following steps:
First the Left Hand Side:

a. Compute the divergence of \vec{F} :
$\vec{\nabla} \cdot \vec{F}=$
b. Compute the left hand side:
$\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=$
Second the Right Hand Side: The boundary surface consists of a disk and a cone. Disk:
c. Parametrize the disk.
$\vec{R}(r, \theta)=$
d. Compute the tangent vectors:
$\vec{e}_{r}=$
$\vec{e}_{\theta}=$
e. Compute the normal vector:
$\vec{N}=$
f. Evaluate $\vec{F}=\left\langle y z^{2}, x z^{2}, z\left(x^{2}+y^{2}\right)\right\rangle$ on the disk:
$\left.\vec{F}\right|_{\vec{R}(r, \theta)}=$
g. Compute the dot product:
$\vec{F} \cdot \vec{N}=$
h. Compute the flux through D :
$\iint_{D} \vec{F} \cdot d \vec{S}=$

Cone:

The cone may be parametrized by $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$
i. Compute the tangent vectors:
$\vec{e}_{r}=$
$\vec{e}_{\theta}=$
j. Compute the normal vector:
$\vec{N}=$
k. Evaluate $\vec{F}=\left\langle y z^{2}, x z^{2}, z\left(x^{2}+y^{2}\right)\right\rangle$ on the cone:

$$
\left.\vec{F}\right|_{\vec{R}(r, \theta)}=
$$

I. Compute the dot product:
$\vec{F} \cdot \vec{N}=$
m. Compute the flux through C :
$\iint_{C} \vec{F} \cdot \overrightarrow{d S}=$
n. Compute the TOTAL right hand side:

Solution: $\iint_{\partial V} \vec{F} \cdot \overrightarrow{d S}=$

