Name						
MATH 221	Final	Spring 2023	1-9	/36	12	/15
Section 501		P. Yasskin	10	/15	13	/25
Multiple Choice: (4 points each. No part credit.)			11	/15	Total	/106

- **1**. Find the angle between the line $\vec{r}(t) = (3 + 2t, 2, 5 + 2t)$ and the normal to the plane x + y + 2z = 4.
 - **a**. $\frac{\pi}{6}$ **b**. $\frac{\pi}{4}$
 - c. $\frac{\pi}{3}$
 - **d**. $\frac{\pi}{2}$ **e**. $\frac{2\pi}{3}$

- **2**. Find the equation of the plane tangent to $z = x^2y + y^2x$ at the point (x,y) = (1,2). Which of the following points lies on the tangent plane?
 - **a**. (2, 1, 19)
 - **b**. (2,1,9)
 - **c**. (3,3,17)
 - **d**. (3,3,21)

- **3**. Find the plane tangent to the surface $x^2z + y^2z + xyz = 21$ at the point P = (1, 2, 3). Find the *z*-intercept.
 - **a**. *z* = 3
 - **b**. *z* = 5
 - **c**. *z* = 7
 - **d**. *z* = 9
 - **e**. *z* = 11

- 4. The volume of a cone is $V = \frac{1}{3}\pi r^2 h$. A cone currently has radius r = 5 cm and height h = 8 cm. If the radius decreases at $0.3 \frac{\text{cm}}{\text{sec}}$ while the volume decreases by $8\pi \frac{\text{cm}^3}{\text{sec}}$, find the rate at which the height is currently changing. $\frac{dh}{dt} =$
 - **a**. $\frac{3}{25} \frac{\text{cm}}{\text{sec}}$ **b**. $\frac{48}{25} \frac{\text{cm}}{\text{sec}}$
 - c. $-\frac{25}{3} \frac{\text{cm}}{\text{sec}}$ d. $-\frac{25}{48} \frac{\text{cm}}{\text{sec}}$
 - e. $0 \frac{\text{cm}}{\text{sec}}$

- **5**. The function $f(x,y) = x^4 8xy + \frac{1}{16}y^4$ has a critical point at (2,4). Use the Second Derivative Test to classify this critical point.
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails

6. Compute
$$\int_{0}^{8} \int_{x^{1/3}}^{2} \cos(y^{4}) dy dx$$

HINT: Reverse the order of integration.

a.
$$\frac{1}{4}\sin(4) - \frac{1}{4}$$

b. $\frac{1}{4}\sin(64) - \frac{1}{4}$
c. $\frac{1}{4}\sin(64)$
d. $\frac{1}{4}\sin(16) - \frac{1}{4}$
e. $\frac{1}{4}\sin(16)$

7. Consider the parametric surface $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$. Find the normal line at the point $P = \vec{R}\left(\sqrt{2}, \frac{\pi}{4}\right) = (1, 1, 2)$. It intersects the *xy*-plane at

- **a**. (-3,-3,0)
- **b**. (-3, -3, 4)
- c. (5,5,0)
- **d**. (5, 5, 4)
- **e**. $(2\sqrt{2}, 2\sqrt{2}, 0)$

8. On Exam 3, you solved the problem:

"Given the function f(x,y,z) = xy + 3z compute the vector line integral $\int_{A}^{B} \vec{\nabla} f \cdot d\vec{s}$ along the twisted cubic $\vec{r}(t) = \left(t, t^2, \frac{2}{3}t^3\right)$ between $A = \left(1, 1, \frac{2}{3}\right)$ and B = (3, 9, 18)." You can now do it more easily using a Theorem. Which Theorem?

- a. Fundamental Theorem of Calculus for Curves
- b. Green's Theoprem
- c. 2D Stokes' Theorem
- d. Stokes' Theorem
- e. Gauss' Theorem

9. Compute the line integral $\oint (3y + \cos x) dx + (5x - \sin y) dy$ counterclockwise around the boundary of the region shown consisting of a square and 4 semicircles. HINT: Use a Theorem.

- **a**. $4 + 2\pi$
- **b**. $1 + 2\pi$
- **c**. $8 + 4\pi$
- **d**. $\pi + 2\pi^2$
- **e**. $2\pi + 4\pi^2$

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (15 points) Find the volume of the largest rectangular solid with 3 faces in the coordinate planes and the opposite vertex on the plane $\frac{x}{9} + \frac{y}{6} + \frac{z}{3} = 1$.

11. (15 points) Consider the parametric surface $\vec{R}(u,v) = (u^2, v^2, \sqrt{2} uv)$ for $0 \le u \le 2$ and $0 \le v \le 3$. Find the mass of the surface if the surface density is $\delta = \frac{1}{x+y}$. HINT: Factor out a $\sqrt{8}$.

- **12.** (15 points) Given the vector field $\vec{F}(x,y,z) = \langle yz^2, -xz^2, z^3 \rangle$ compute the vector surface integral $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ along the side surface of the cylinder $x^2 + y^2 = 4$ for $2 \le z \le 6$, oriented **outward**. (There are no ends on the cylinder.) On Exam 3, you solved this directly. Now solve it using Stokes' Theorem, using the following steps.
 - **a**. Compute the line integral $\int_{z=6} \vec{F} \cdot d\vec{s}$ around the circle $x^2 + y^2 = 4$ for z = 6, **counterclockwise** as seen from above.

The circle may be parametrized by $\vec{r}(\theta) = (2\cos\theta, 2\sin\theta, 6)$.

The velocity is $\vec{v} =$

On the circle $\vec{F}\Big|_{\vec{r}(\theta)} =$

$$\int_{z=6} \vec{F} \cdot d\vec{s} =$$

b. Compute the line integral $\int_{z=6} \vec{F} \cdot d\vec{s}$ around the circle $x^2 + y^2 = 4$ for z = 2, **counterclockwise** as seen from above. The circle may be parametrized by $\vec{r}(\theta) = (2\cos\theta, 2\sin\theta, 2)$.

The velocity is $\vec{v} =$

On the circle $\vec{F}|_{\vec{r}(\theta)} =$

$$\int_{z=2} \vec{F} \cdot d\vec{s} =$$

c. Combine the answers to parts (a) and (b) (justifying your orientations) to find

 $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S} =$

13. (25 points) Verify Gauss' Theorem $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$ for the vector field $\vec{F} = \langle yz^2, xz^2, z(x^2 + y^2) \rangle$ and the solid cone $\sqrt{x^2 + y^2} \le z \le 4$

Be sure to check orientations. Use the following steps:

First the Left Hand Side:

a. Compute the divergence of \vec{F} :

 $\vec{\nabla} \cdot \vec{F} =$

b. Compute the left hand side:

$$\iiint_V \vec{\nabla} \cdot \vec{F} \, dV =$$

Second the Right Hand Side: The boundary surface consists of a disk and a cone. **Disk**:

c. Parametrize the disk.

$$\vec{R}(r,\theta) =$$

d. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

e. Compute the normal vector:

$$\vec{N} =$$

f. Evaluate $\vec{F} = \langle yz^2, xz^2, z(x^2 + y^2) \rangle$ on the disk:

$$\vec{F}\Big|_{\vec{R}(r,\theta)} =$$

g. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

h. Compute the flux through *D*:

$$\iint_D \vec{F} \cdot d\vec{S} =$$

(continued)

Cone:

The cone may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$

i. Compute the tangent vectors:

$$\vec{e}_r =$$

 $\vec{e}_{\theta} =$

j. Compute the normal vector:

$$\vec{N} =$$

k. Evaluate $\vec{F} = \langle yz^2, xz^2, z(x^2 + y^2) \rangle$ on the cone:

$$\vec{F}\Big|_{\vec{R}(r,\theta)} =$$

I. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

m. Compute the flux through *C*:

$$\iint_C \vec{F} \cdot d\vec{S} =$$

n. Compute the **TOTAL** right hand side:

Solution: $\iint_{\partial V} \vec{F} \cdot d\vec{S} =$