Name \qquad
MATH 221
Exam 1, Version A
Fall 2023
502,503
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

$1-9$	$/ 54$	12	$/ 10$
10	$/ 20$	13	$/ 10$
11	$/ 10$	Total	$/ 104$

1. The circle $(x-2)^{2}+(y-5)^{2}=9$ is tangent to which line?

HINT: Draw a picture.
a. $x=1$
b. $x=3$
c. $x=5$
d. $y=1$
e. $y=4$
2. Which of the following is the plot of the polar curve $r=2-4 \cos \theta$?
a.

b.

c.

d.

3. The plot at the right is the contour plot of which function?
a. $z=(x-2)^{2}+(y-3)^{2}$
b. $z=(x-2)^{2}-(y-3)^{2}$
c. $z=(x-3)^{2}+(y-2)^{2}$
d. $z=(x-3)^{2}-(y-2)^{2}$

4. The force $\vec{F}=\langle 5,2\rangle$ pushes a mass from $P=(5,4)$ to $Q=(12,1)$.

Find the angle between the force and the displacement.
a. 30°
b. 45°
c. 60°
d. 120°
e. 135°
5. Find the area of the triangle with vertices $A=(1,2,3), \quad B=(4,6,4)$ and $C=(4,6,6)$.
a. 1
b. 4
c. 5
d. 8
e. 10
6. Find an equation of the line through the point $P=(2,3,4)$ which is perpendicular to the plane $4 x+3 y+2 z=15$.
Then find the point where the line passes through the $x y$-plane.
a. $(x, y, z)=(10,9,0)$
b. $(x, y, z)=(-10,-9,0)$
c. $(x, y, z)=(-6,-3,0)$
d. $(x, y, z)=(6,3,0)$
e. $(x, y, z)=(6,6,0)$
7. Classify the quadratic surface: $-2 x^{2}+4 x+3 y^{2}+6 y-z+3=0$
a. elliptic paraboloid opening up in the z-direction
b. elliptic paraboloid opening down in the z-direction
c. hyperbolic paraboloid opening up in the x-direction and down in the y-direction
d. hyperbolic paraboloid opening up in the y-direction and down in the x-direction
e. hyperbolic cylinder
8. If an airplane is flying from West to East directly above the equator, where does \vec{B} point? Why?
a. North
b. South
c. West
d. Up
e. Down
9. Find the circulation in a bowl of water, counterclockwise around the circle $x^{2}+y^{2}=9$, with $z=2$, if its fluid velocity field is $\vec{V}=\langle 2 x-y, x+2 y,-z\rangle$.
a. 3π
b. 6π
c. 12π
d. 15π
e. 18π

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (20 pts) Consider the twisted cubic $\vec{r}=\left(6 t, 3 t^{2}, t^{3}\right)$. Compute each of the following. Note: $\quad 4+4 t^{2}+t^{4}=\left(2+t^{2}\right)^{2}$
a. (6 pts) Arc length between $(0,0,0)$ and $(6,3,1)$.
b. (6 pts) Curvature $\kappa=\frac{\vec{v} \times \vec{a} \mid}{|\vec{v}|^{3}}$.

HINT: Factor out an 18^{2}.
c. (4 pts) Tangential acceleration, a_{T}.

HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
d. (4 pts) Normal acceleration, a_{N}. HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
11. (10 pts) Find the y-component of the center of mass of the semicircle $y=\sqrt{9-x^{2}}$ if its linear density is $\delta(x, y)=y$.
HINT: The semicircle may be parametrized by $\vec{r}(t)=(3 \cos t, 3 \sin t)$ for $0 \leq t \leq \pi$.
12. (10 pts) Write the vector, $\langle 1,1,4\rangle$, as a linear composition of $\langle 2,1,3\rangle$ and $\langle 3,1,2\rangle$, i.e. find a and b so that:

$$
\langle 1,1,4\rangle=a\langle 2,1,3\rangle+b\langle 3,1,2\rangle
$$

or show it cannot be done.
13. (10 pts) Consider the line and the plane:

$$
\begin{array}{ll}
L: & \frac{x-2}{2}=\frac{y-3}{2}=\frac{z-1}{2} \\
P: & 4 x-3 y+z=4
\end{array}
$$

Determine if they are parallel or intersecting. If they intersect, find the point of intersection.
You MUST show why they are or are not parallel.

