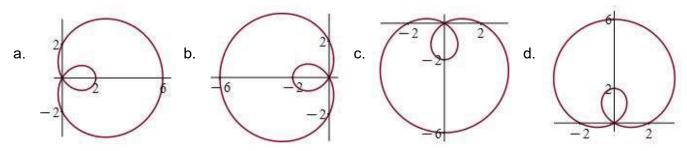
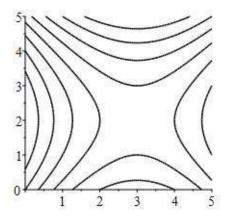
Name		Section:				
MATH 221	Exam 1, Version A	Fall 2023	1-9	/54	12	/10
502,503		P. Yasskin	10	/20	13	/10
Multiple Choice: (6 points each. No part credit.)			11	/10	Total	/104

- **1**. The circle $(x-2)^2 + (y-5)^2 = 9$ is tangent to which line? HINT: Draw a picture.
 - **a**. *x* = 1
 - **b**. *x* = 3
 - **c**. x = 5
 - **d**. *y* = 1
 - **e**. *y* = 4
- **2**. Which of the following is the plot of the polar curve $r = 2 4\cos\theta$?



- 3. The plot at the right is the contour plot of which function?
 - **a**. $z = (x-2)^2 + (y-3)^2$
 - **b**. $z = (x-2)^2 (y-3)^2$
 - **c**. $z = (x-3)^2 + (y-2)^2$
 - **d**. $z = (x-3)^2 (y-2)^2$



- **4**. The force $\vec{F} = \langle 5, 2 \rangle$ pushes a mass from P = (5,4) to Q = (12,1). Find the angle between the force and the displacement.
 - **a**. 30°
 - **b**. 45°
 - $\textbf{C}. \quad 60^{\circ}$
 - $\textbf{d}. \ 120^{\circ}$
 - **e**. 135°

- 5. Find the area of the triangle with vertices A = (1,2,3), B = (4,6,4) and C = (4,6,6).
 - **a**. 1
 - **b**. 4
 - **c**. 5
 - **d**. 8
 - **e**. 10

- **6**. Find an equation of the line through the point P = (2,3,4) which is perpendicular to the plane 4x + 3y + 2z = 15. Then find the point where the line passes through the *xy*-plane.
 - **a**. (x,y,z) = (10,9,0)
 - **b**. (x,y,z) = (-10,-9,0)
 - **c**. (x, y, z) = (-6, -3, 0)
 - **d**. (x,y,z) = (6,3,0)
 - **e**. (x,y,z) = (6,6,0)

- 7. Classify the quadratic surface: $-2x^2 + 4x + 3y^2 + 6y z + 3 = 0$
 - **a**. elliptic paraboloid opening up in the *z*-direction
 - **b**. elliptic paraboloid opening down in the *z*-direction
 - c. hyperbolic paraboloid opening up in the x-direction and down in the y-direction
 - d. hyperbolic paraboloid opening up in the *y*-direction and down in the *x*-direction
 - e. hyperbolic cylinder

- 8. If an airplane is flying from West to East directly above the equator, where does \vec{B} point? Why?
 - a. North
 - **b**. South
 - **c**. West
 - **d**. Up
 - e. Down
- **9**. Find the circulation in a bowl of water, counterclockwise around the circle $x^2 + y^2 = 9$, with z = 2, if its fluid velocity field is $\vec{V} = \langle 2x y, x + 2y, -z \rangle$.
 - **a**. 3π
 - **b**. 6π
 - **c**. 12π
 - **d**. 15π
 - **e**. 18π

- **10**. (20 pts) Consider the twisted cubic $\vec{r} = (6t, 3t^2, t^3)$. Compute each of the following. Note: $4 + 4t^2 + t^4 = (2 + t^2)^2$
 - **a**. (6 pts) Arc length between (0,0,0) and (6,3,1).

b. (6 pts) Curvature
$$\kappa = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3}$$
.
HINT: Factor out an 18^2 .

- **c**. (4 pts) Tangential acceleration, a_T . HINT: You do NOT need to compute \hat{T} , \hat{N} or \hat{B} .
- **d**. (4 pts) Normal acceleration, a_N . HINT: You do NOT need to compute \hat{T} , \hat{N} or \hat{B} .

11. (10 pts) Find the *y*-component of the center of mass of the semicircle $y = \sqrt{9 - x^2}$ if its linear density is $\delta(x, y) = y$. HINT: The semicircle may be parametrized by $\vec{r}(t) = (3\cos t, 3\sin t)$ for $0 \le t \le \pi$.

12. (10 pts) Write the vector, $\langle 1, 1, 4 \rangle$, as a linear composition of $\langle 2, 1, 3 \rangle$ and $\langle 3, 1, 2 \rangle$, i.e. find *a* and *b* so that:

$$\langle 1, 1, 4 \rangle = a \langle 2, 1, 3 \rangle + b \langle 3, 1, 2 \rangle$$

or show it cannot be done.

. (10 pts) Consider the line and the plane:

$$L: \qquad \frac{x-2}{2} = \frac{y-3}{2} = \frac{z-1}{2}$$
$$P: \qquad 4x - 3y + z = 4$$

Determine if they are parallel or intersecting. If they intersect, find the point of intersection. You MUST show why they are or are not parallel.