Name \qquad
MATH 221
Exam 1, Version A
502,503
Solutions
\qquad
Fall 2023

Multiple Choice: (6 points each. No part credit.)

$1-9$	$/ 54$	12	$/ 10$
10	$/ 20$	13	$/ 10$
11	$/ 10$	Total	$/ 104$

1. The circle $(x-2)^{2}+(y-5)^{2}=9$ is tangent to which line?

HINT: Draw a picture.
a. $x=1$
b. $x=3$
c. $x=5 \quad$ Correct
d. $y=1$
e. $y=4$

Solution: See the plot.

2. Which of the following is the plot of the polar curve $r=2-4 \cos \theta$?
a.

b.

c.

d.

Correct

Solution: $r(0)=2-4(1)=-2 \quad$ (measured left since $r<0$) $r(\pi)=2-4(-1)=6 \quad$ (measured left since θ is left).
3. The plot at the right is the contour plot of which function?
a. $z=(x-2)^{2}+(y-3)^{2}$
b. $z=(x-2)^{2}-(y-3)^{2}$
c. $z=(x-3)^{2}+(y-2)^{2}$
d. $z=(x-3)^{2}-(y-2)^{2} \quad$ Correct

Solution: The plot is centered at (3,2). So the function is $z= \pm(x-3)^{2} \pm(y-2)^{2}$.
Since the contours are hyperbolas, not circles, the function is $z=(x-3)^{2}-(y-2)^{2}$.
4. The force $\vec{F}=\langle 5,2\rangle$ pushes a mass from $P=(5,4)$ to $Q=(12,1)$.

Find the angle between the force and the displacement.
a. 30°
b. 45° Correct
c. 60°
d. 120°
e. 135°

Solution: The displacement is $\vec{D}=Q-P=\langle 7,-3\rangle$. So the angle satisfies:
$\cos \theta=\frac{\vec{F} \cdot \vec{D}}{|\vec{F}||\vec{D}|}=\frac{35-6}{\sqrt{25+4} \sqrt{49+9}}=\frac{29}{\sqrt{29} \sqrt{58}}=\frac{1}{\sqrt{2}} \quad \theta=45^{\circ}$
5. Find the area of the triangle with vertices $A=(1,2,3), B=(4,6,4)$ and $C=(4,6,6)$.
a. 1
b. 4
c. 5

Correct
d. 8
e. 10

Solution: $\overrightarrow{A B}=B-A=\langle 3,4,1\rangle \quad \overrightarrow{A C}=C-A=\langle 3,4,3\rangle$

$$
\begin{aligned}
& \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
3 & 4 & 1 \\
3 & 4 & 3
\end{array}\right|=\hat{\imath}(12-4)-\jmath(9-3)+\hat{k}(12-12)=\langle 8,-6,0\rangle \\
& \text { Area }=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2}|\langle 8,-6,0\rangle|=\frac{1}{2} \sqrt{64+36}=\frac{1}{2} \sqrt{100}=5
\end{aligned}
$$

6. Find an equation of the line through the point $P=(2,3,4)$
which is perpendicular to the plane $4 x+3 y+2 z=15$.
Then find the point where the line passes through the $x y$-plane.
a. $(x, y, z)=(10,9,0)$
b. $(x, y, z)=(-10,-9,0)$
c. $(x, y, z)=(-6,-3,0)$ Correct
d. $(x, y, z)=(6,3,0)$
e. $(x, y, z)=(6,6,0)$

Solution: The direction of the line is the normal to the plane, $\vec{v}=\vec{N}=\langle 4,3,2\rangle$. The point is given.
So the line is $X=P+\vec{v}$ or $(x, y, z)=(2,3,4)+t\langle 4,3,2\rangle \quad$ or $\quad x=2+4 t \quad y=3+3 t \quad z=4+2 t$.
The line intersects the $x y$-plane when $z=0=4+2 t$ or $t=-2$. So $(x, y, z)=(2,3,4)-2\langle 4,3,2\rangle=(-6,-3,0)$
7. Classify the quadratic surface: $-2 x^{2}+4 x+3 y^{2}+6 y-z+3=0$
a. elliptic paraboloid opening up in the z-direction
b. elliptic paraboloid opening down in the z-direction
c. hyperbolic paraboloid opening up in the x-direction and down in the y-direction
d. hyperbolic paraboloid opening up in the y-direction and down in the x-direction Correct
e. hyperbolic cylinder

Solution: Since the x and y terms are quadratic with opposite signs and z is linear, the surface is a hyperbolic paraboloid with axis parallel to the z-axis. To find which way it opens, we solve for z :

$$
z=-2 x^{2}+4 x+3 y^{2}+6 y+3
$$

Since the coefficient of x^{2} is negative and that of y^{2} is positive, the paraboloid opens up in the y direction and down in the x direction.
8. If an airplane is flying from West to East directly above the equator, where does \vec{B} point? Why?
a. North Correct
b. South
c. West
d. Up
e. Down

Solution: \vec{T} points East. \vec{N} points Down toward the center of the Earth.
So $\vec{B}=\vec{T} \times \vec{N}$ points North.
9. Find the circulation in a bowl of water, counterclockwise around the circle $x^{2}+y^{2}=9$, with $z=2$, if its fluid velocity field is $\vec{V}=\langle 2 x-y, x+2 y,-z\rangle$.
a. 3π
b. 6π
c. 12π
d. 15π
e. 18π Correct

Solution: The circle may be parametrized by $\vec{r}(t)=(3 \cos t, 3 \sin t, 2)$.
Its tangent vector is $\vec{v}=\langle-3 \sin t, 3 \cos t, 0\rangle$. The fluid velocity on the curve is
$\vec{V}(\vec{r}(t))=\langle 6 \cos t-3 \sin t, 3 \cos t+6 \sin t,-2\rangle$.
The dot product of the fluid velocity and the tangent vector is $\vec{V}(\vec{r}(t)) \cdot \vec{v}=-3 \sin t(6 \cos t-3 \sin t)+3 \cos t(3 \cos t+6 \sin t)+0=9 \sin ^{2} t+9 \cos ^{2} t=9$
So the circulation is
Circ $=\oint \vec{V} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{V}(\vec{r}(t)) \cdot \vec{v} d t=\int_{0}^{2 \pi} 9 d t=[9 t]_{0}^{2 \pi}=18 \pi$
10. (20 pts) Consider the twisted cubic $\vec{r}=\left(6 t, 3 t^{2}, t^{3}\right)$. Compute each of the following.

Note: $\quad 4+4 t^{2}+t^{4}=\left(2+t^{2}\right)^{2}$
a. (6 pts) Arc length between $(0,0,0)$ and $(6,3,1)$.

Solution: $\vec{v}=\left\langle 6,6 t, 3 t^{2}\right\rangle \quad|\vec{v}|=\sqrt{36+36 t^{2}+9 t^{4}}=3 \sqrt{4+4 t^{2}+t^{4}}=3 \sqrt{\left(2+t^{2}\right)^{2}}=3\left(2+t^{2}\right)$
$L=\int_{0}^{1}|\vec{v}| d t=\int_{0}^{1} 3\left(2+t^{2}\right) d t=3\left[2 t+\frac{t^{3}}{3}\right]_{0}^{1}=3\left[2+\frac{1}{3}\right]=7$
b. (6 pts) Curvature $\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}$.

HINT: Factor out an 18^{2}.
Solution: $\quad \vec{a}=\langle 0,6,6 t\rangle \quad \vec{v} \times \vec{a}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 6 & 6 t & 3 t^{2} \\ 0 & 6 & 6 t\end{array}\right|=\left\langle 36 t^{2}-18 t^{2},-36 t, 36\right\rangle=\left\langle 18 t^{2},-36 t, 36\right\rangle$
$|\vec{v} \times \vec{a}|=\sqrt{18^{2} t^{4}+36^{2} t^{2}+36^{2}}=18 \sqrt{t^{4}+4 t^{2}+4}=18 \sqrt{\left(2+t^{2}\right)^{2}}=18\left(2+t^{2}\right)$
$\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}=\frac{18\left(2+t^{2}\right)}{3^{3}\left(2+t^{2}\right)^{3}}=\frac{2}{3\left(2+t^{2}\right)^{2}}$
c. (4 pts) Tangential acceleration, a_{T}.

HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
Solution: $\quad a_{T}=\frac{d}{d t}|\vec{v}|=\frac{d}{d t} 3\left(2+t^{2}\right)=6 t$
d. (4 pts) Normal acceleration, a_{N}.

HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
Solution: $\quad a_{n}=\kappa|\vec{v}|^{2}=\frac{2}{3\left(2+t^{2}\right)^{2}} 3^{2}\left(2+t^{2}\right)^{2}=6$
11. (10 pts) Find the y-component of the center of mass of the semicircle $y=\sqrt{9-x^{2}}$
if its linear density is $\delta(x, y)=y$.
HINT: The semicircle may be parametrized by $\vec{r}(t)=(3 \cos t, 3 \sin t)$ for $0 \leq t \leq \pi$.
Solution: The velocity is $\vec{v}=\langle-3 \sin t, 3 \cos t\rangle$. The speed is $|\vec{v}|=\sqrt{9 \sin ^{2} t+9 \cos ^{2} t}=3$. The density along the curve is $\delta=y=3 \sin t$. The mass is $M=\int_{0}^{\pi} \delta|\vec{v}| d t=\int_{0}^{\pi} 3 \sin t 3 d t=[-9 \cos t]_{0}^{\pi}=9--9=18$
The y-moment is

$$
\begin{aligned}
M_{y} & =\int_{0}^{\pi} y \delta|\vec{v}| d t=\int_{0}^{\pi} 3 \sin t 3 \sin t 3 d t=27 \int_{0}^{\pi} \sin ^{2} t d t=27 \int_{0}^{\pi} \frac{1-\cos (2 t)}{2} d t \\
& =\frac{27}{2}\left[t-\frac{\sin (2 t)}{2}\right]_{0}^{\pi}=\frac{27 \pi}{2}
\end{aligned}
$$

So the y-component of the center of mass is $\bar{y}=\frac{M_{y}}{M}=\frac{27 \pi}{2} \frac{1}{18}=\frac{3 \pi}{4}$.
12. (10 pts) Write the vector, $\langle 1,1,4\rangle$, as a linear composition of $\langle 2,1,3\rangle$ and $\langle 3,1,2\rangle$, i.e. find a and b so that:

$$
\langle 1,1,4\rangle=a\langle 2,1,3\rangle+b\langle 3,1,2\rangle
$$

or show it cannot be done.
Solution: We need to solve the equations: $2 a+3 b=1 \quad a+b=1 \quad 3 a+2 b=4$
The first equation minus twice the second is $b=-1$. Then the second equation says $a=2$.
We check the third equation: $3 a+2 b=3(2)+2(-1)=4$ which is correct. So:

$$
\langle 1,1,4\rangle=2\langle 2,1,3\rangle-1\langle 3,1,2\rangle
$$

13. (10 pts) Consider the line and the plane:

$$
\begin{array}{ll}
L: & \frac{x-2}{2}=\frac{y-3}{2}=\frac{z-1}{2} \\
P: & 4 x-3 y+z=4
\end{array}
$$

Determine if they are parallel or intersecting. If they intersect, find the point of intersection.
You MUST show why they are or are not parallel.
Solution: The parametric equation of the line is $x=2+2 t, \quad y=3+2 t, \quad z=1+2 t$.
The direction of the line is $\vec{v}=\langle 2,2,2\rangle$. The normal to the plane is $\vec{N}=\langle 4,-3,1\rangle$.
Since $\vec{v} \cdot \vec{N}=8-6+2=4 \neq 0$, they are not perpendicular and the line is not parallel to the plane.
We substitute the line into the plane and solve for t :
$4 x-3 y+z=4(2+2 t)-3(3+2 t)+(1+2 t)=4 \quad \Rightarrow \quad 4 t=4 \quad \Rightarrow \quad t=1$
We substitute back into the line to get the point of intersection:
$(x, y, z)=(2+2 t, 3+2 t, 1+2 t)=(2+2(1), 3+2(1), 1+2(1))=(4,5,3)$

