Name \qquad Section: \qquad
MATH 221
Exam 1, Version B
502,503
Fall 2023

Multiple Choice: (6 points each. No part credit.)
P. Yasskin

1. Find the sphere which is tangent to the z-axis whose center is $(4,3,2)$.
a. $(x-4)^{2}+(y-3)^{2}+(z-2)^{2}=4$
b. $(x-4)^{2}+(y+3)^{2}+(z-2)^{2}=25$
c. $(x-4)^{2}+(y-3)^{2}+(z-2)^{2}=25$
d. $(x+4)^{2}+(y+3)^{2}+(z+2)^{2}=4$
e. $(x+4)^{2}+(y+3)^{2}+(z+2)^{2}=25$
2. Which of the following is the plot of the polar curve $r=4 \cos \theta-2$?
a.

b.

c.

d.

3. The plot at the right is the contour plot of which function?
a. $z=(x-2)^{2}+(y-3)^{2}$
b. $z=(x-2)^{2}-(y-3)^{2}$
c. $z=(x-3)^{2}+(y-2)^{2}$
d. $z=(x-3)^{2}-(y-2)^{2}$

4. The force $\vec{F}=\langle 7,-3\rangle$ pushes a mass from $P=(12,1)$ to $Q=(7,-1)$.

Find the angle between the force and the displacement.
a. 135°
b. 120°
c. 60°
d. 45°
e. 30°
5. Do the vectors $\vec{u}=\langle 2,0,1\rangle, \vec{v}=\langle 0,-1,3\rangle$ and $\vec{w}=\langle 3,2,0\rangle$ form a left or right handed triplet? Then find the volume of the parallelepiped with these edges.
a. left handed

$$
V=3
$$

b. left handed $\quad V=9$
c. left handed $\quad V=-9$
d. right handed $\quad V=3$
e. right handed $\quad V=-9$
6. Find an equation of the plane through the point $P=(3,2,1)$ which is perpendicular to the line $(x, y, z)=(1+4 t, 2+3 t, 3+2 t)$. Then find where the plane passes through the z-axis.
a. $z=2$
b. $z=4$
c. $z=5$
d. $z=10$
e. $z=20$
7. Classify the quadratic curve: $x^{2}-6 x=2 y^{2}-4 y-7$.
a. parabola opening in the x direction
b. parabola opening in the y direction
c. hyperbola opening up and down
d. hyperbola opening left and right
e. cross
8. Your drone flies NorthEast $5 \sqrt{2} \mathrm{~km}$ and then East 7 km . If it flies home along a straight line, how far does it need to fly to get home?
a. 11 km
b. 12 km
c. $7+5 \sqrt{2} \mathrm{~km}$
d. 13 km
e. 17 km
9. Find the circulation in a bowl of water, counterclockwise around the circle $x^{2}+y^{2}=16$, with $z=3$, if its fluid velocity field is $\vec{V}=\langle x-y, x+y, 2 z\rangle$.
a. 2π
b. 4π
c. 8π
d. 16π
e. 32π

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (20 pts) Consider the twisted cubic $\vec{r}=\left(t^{3}, 3 t^{2}, 6 t\right)$. Compute each of the following. Note: $\quad t^{4}+4 t^{2}+4=\left(t^{2}+2\right)^{2}$
a. (6 pts) Arc length between $(0,0,0)$ and $(1,3,6)$.
b. (6 pts) Curvature $\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}$.

HINT: Factor out an 18^{2}.
c. $(4 \mathrm{pts})$ Tangential acceleration, a_{T}.

HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
d. (4 pts) Normal acceleration, a_{N}. HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
11. (10 pts) Find the average value of the function $f(x, y, z)=x^{2}$ on the helix $\vec{r}(t)=(3 \cos t, 3 \sin t, 4 t)$ for $0 \leq t \leq 2 \pi$.
12. (10 pts) Write the vector $\vec{a}=\langle 5,5\rangle$ as the sum of vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{b}=\langle 3,1\rangle$ and \vec{q} is perpendicular to \vec{b}.
13. (10 pts) Consider the 2 planes:

$$
\begin{array}{ll}
P_{1}: & 2 x+y+3 z=8 \\
P_{2}: & x+2 y-2 z=7
\end{array}
$$

Determine if they are parallel or intersecting. If they intersect, find a parametric equation for the line of intersection.
You MUST show why they are or are not parallel.

