Name_

Section:

MATH 221

Exam 1, Version B

Fall 2023

502,503

P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1-9	/54	12	/10
10	/20	13	/10
11	/10	Total	/104

1. Find the sphere which is tangent to the z-axis whose center is (4,3,2).

a.
$$(x-4)^2 + (y-3)^2 + (z-2)^2 = 4$$

b.
$$(x-4)^2 + (y+3)^2 + (z-2)^2 = 25$$

c.
$$(x-4)^2 + (y-3)^2 + (z-2)^2 = 25$$

d.
$$(x+4)^2 + (y+3)^2 + (z+2)^2 = 4$$

d.
$$(x+4)^2 + (y-3)^2 + (z-2)^2 = 25$$

e. $(x+4)^2 + (y+3)^2 + (z+2)^2 = 25$

2. Which of the following is the plot of the polar curve $r = 4\cos\theta - 2$?

The plot at the right is the contour plot of which function?

a.
$$z = (x-2)^2 + (y-3)^2$$

b.
$$z = (x-2)^2 - (y-3)^2$$

c.
$$z = (x-3)^2 + (y-2)^2$$

d.
$$z = (x-3)^2 - (y-2)^2$$

- **4**. The force $\vec{F} = \langle 7, -3 \rangle$ pushes a mass from P = (12, 1) to Q = (7, -1). Find the angle between the force and the displacement.
 - **a**. 135°
 - **b**. 120°
 - **c**. 60°
 - **d**. 45°
 - e. 30°

- **5**. Do the vectors $\vec{u} = \langle 2, 0, 1 \rangle$, $\vec{v} = \langle 0, -1, 3 \rangle$ and $\vec{w} = \langle 3, 2, 0 \rangle$ form a left or right handed triplet? Then find the volume of the parallelepiped with these edges.
 - **a**. left handed V = 3
 - **b**. left handed V = 9
 - **c**. left handed V = -9
 - **d**. right handed V = 3
 - **e**. right handed V = -9

- **6**. Find an equation of the plane through the point P = (3, 2, 1) which is perpendicular to the line (x, y, z) = (1 + 4t, 2 + 3t, 3 + 2t). Then find where the plane passes through the z-axis.
 - **a**. z = 2
 - **b**. z = 4
 - **c**. z = 5
 - **d**. z = 10
 - **e**. z = 20

- 7. Classify the quadratic curve: $x^2 6x = 2y^2 4y 7$.
 - **a**. parabola opening in the x direction
 - **b**. parabola opening in the y direction
 - c. hyperbola opening up and down
 - d. hyperbola opening left and right
 - e. cross

- 8. Your drone flies NorthEast $5\sqrt{2}$ km and then East 7 km. If it flies home along a straight line, how far does it need to fly to get home?
 - **a**. 11 km
 - **b**. 12 km
 - **c**. $7 + 5\sqrt{2}$ km
 - **d**. 13 km
 - **e**. 17 km
- **9**. Find the circulation in a bowl of water, counterclockwise around the circle $x^2 + y^2 = 16$, with z = 3, if its fluid velocity field is $\vec{V} = \langle x y, x + y, 2z \rangle$.
 - **a**. 2π
 - **b**. 4π
 - c. 8π
 - **d**. 16π
 - **e**. 32π

Work Out: (Points indicated. Part credit possible. Show all work.)

- **10**. (20 pts) Consider the twisted cubic $\vec{r} = (t^3, 3t^2, 6t)$. Compute each of the following. Note: $t^4 + 4t^2 + 4 = (t^2 + 2)^2$
 - **a**. (6 pts) Arc length between (0,0,0) and (1,3,6).

b. (6 pts) Curvature $\kappa = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3}$.

HINT: Factor out an 18^2 .

- **c**. (4 pts) Tangential acceleration, a_T . HINT: You do NOT need to compute \hat{T} , \hat{N} or \hat{B} .
- **d**. (4 pts) Normal acceleration, a_N . HINT: You do NOT need to compute \hat{T} , \hat{N} or \hat{B} .

11. (10 pts) Find the average value of the function $f(x,y,z) = x^2$ on the helix $\vec{r}(t) = (3\cos t, 3\sin t, 4t)$ for $0 \le t \le 2\pi$.

12. (10 pts) Write the vector $\vec{a} = \langle 5, 5 \rangle$ as the sum of vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{b} = \langle 3, 1 \rangle$ and \vec{q} is perpendicular to \vec{b} .

13. (10 pts) Consider the 2 planes:

$$P_1:$$
 $2x + y + 3z = 8$
 $P_2:$ $x + 2y - 2z = 7$

Determine if they are parallel or intersecting. If they intersect, find a parametric equation for the line of intersection.

You MUST show why they are or are not parallel.