Name \qquad
MATH 221
Exam 1, Version C
502,503
Solutions
Fall 2023

Multiple Choice: (6 points each. No part credit.)
\qquad
P. Yasskin

1. The circle $(x-2)^{2}+(y-5)^{2}=9$ is tangent to which line?

HINT: Draw a picture.
a. $x=1$
b. $x=3$
c. $x=5 \quad$ Correct
d. $y=1$
e. $y=4$

Solution: See the plot.

2. Which of the following is the plot of the polar curve $r=4 \cos \theta-2$?
a.

b.

c.

d.

Correct

Solution: $r(0)=4(1)-2=2 \quad$ (measured right since θ is right)

$$
r(\pi)=4(-1)-2=-6 \quad(\text { measured right since } \theta \text { is left and } r<0) .
$$

3. The plot at the right is the contour plot of which function?
a. $z=(x-2)^{2}+(y-3)^{2}$
b. $z=(x-2)^{2}-(y-3)^{2}$
c. $z=(x-3)^{2}+(y-2)^{2}$
d. $z=(x-3)^{2}-(y-2)^{2} \quad$ Correct

Solution: The plot is centered at (3,2). So the function is $z= \pm(x-3)^{2} \pm(y-2)^{2}$.
Since the contours are hyperbolas, not circles, the function is $z=(x-3)^{2}-(y-2)^{2}$.
4. At a certain point on a certain curve, $\vec{T}=\frac{1}{\sqrt{14}}\langle 3,2,-1\rangle$ and $\vec{B}=\frac{1}{\sqrt{21}}\langle 2,-1,4\rangle$. Find \vec{N}.
a. $\vec{N}=\frac{1}{\sqrt{6}}\langle-1,2,-1\rangle$
b. $\vec{N}=\frac{1}{\sqrt{6}}\langle-1,2,1\rangle \quad$ Correct
c. $\vec{N}=\frac{1}{\sqrt{6}}\langle 1,2,-1\rangle$
d. $\vec{N}=\frac{1}{\sqrt{6}}\langle 1,-2,-1\rangle$
e. $\vec{N}=\frac{1}{\sqrt{6}}\langle-1,-2,1\rangle$

Solution: $\vec{N}=\vec{B} \times \vec{T}=\frac{1}{\sqrt{21}} \frac{1}{\sqrt{14}}\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -1 & 4 \\ 3 & 2 & -1\end{array}\right|$

$$
=\frac{1}{7 \sqrt{6}}[\hat{\imath}(1-8)-\hat{\jmath}(-2-12)+\hat{k}(4+3)]=\frac{1}{\sqrt{6}}\langle-1,2,1\rangle
$$

5. Find the area of the triangle with vertices $A-(1,1,1), B=(5,1,3)$ and $C=(3,2,1)$.
a. 1
b. 3 Correct
c. 6
d. 12
e. 18

Solution: $\overrightarrow{A B}=B-A=\langle 4,0,2\rangle \quad \overrightarrow{A C}=C-A=\langle 2,1,0\rangle$
$\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & 0 & 2 \\ 2 & 1 & 0\end{array}\right|=\hat{\imath}(-2)-\hat{\jmath}(-4)+\hat{k}(4)=\langle-2,4,4\rangle$
Area $=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2}|\langle-2,4,4\rangle|=\frac{1}{2} \sqrt{4+16+16}=\frac{1}{2} \sqrt{36}=3$
6. Find an equation of the line through the point $P=(2,3,4)$
which is perpendicular to the plane $4 x+3 y+2 z=15$.
Then find the point where the line passes through the $x y$-plane.
a. $(x, y, z)=(10,9,0)$
b. $(x, y, z)=(-10,-9,0)$
c. $(x, y, z)=(-6,-3,0)$ Correct
d. $(x, y, z)=(6,3,0)$
e. $(x, y, z)=(6,6,0)$

Solution: The direction of the line is the normal to the plane, $\vec{v}=\vec{N}=\langle 4,3,2\rangle$. The point is given.
So the line is $X=P+\vec{v}$ or $(x, y, z)=(2,3,4)+t\langle 4,3,2\rangle$ or $x=2+4 t \quad y=3+3 t \quad z=4+2 t$.
The line intersects the $x y$-plane when $z=0=4+2 t$ or $t=-2$. So $(x, y, z)=(2,3,4)-2\langle 4,3,2\rangle=(-6,-3,0)$
7. Classify the quadratic surface: $2 x^{2}-8 x+y^{2}-6 y-z^{2}+2 z=-17$.
a. elliptic paraboloid opening up in the z direction
b. elliptic paraboloid opening down in the z direction
c. hyperboloid of 1 -sheet
d. hyperboloid of 2-sheets Correct
e. cone

Solution: We complete the squares:

$$
\begin{aligned}
2 x^{2}-8 x+y^{2}-6 y-z^{2}+2 z & =-17 \\
2\left(x^{2}-4 x\right)+\left(y^{2}-6 y\right)-\left(z^{2}-2 z\right) & =-17 \\
2\left(x^{2}-4 x+4\right)+\left(y^{2}-6 y+9\right)-\left(z^{2}-2 z+1\right) & =-17+8+9-1 \\
2(x-2)^{2}+(y-3)^{2}-(z-1)^{2} & =-1 \\
-2(x-2)^{2}-(y-3)^{2}+(z-1)^{2} & =1
\end{aligned}
$$

Since the x, y and z terms are quadratic, the right side is 1 and there are 2 minuses and 1 plus, the surface is a hyperboloid of 2 -sheets.
8. If an airplane is flying from East to West directly above the equator, where does \vec{B} point? Why?
a. North
b. South

Correct
c. West
d. Up
e. Down

Solution: \vec{T} points West. \vec{N} points Down toward the center of the Earth.
So $\vec{B}=\vec{T} \times \vec{N}$ points South.
9. Find the work done by the force $\vec{F}=\left\langle z^{2}, y z, x z\right\rangle$ to move a bead along the twisted cubic $\vec{r}(t)=\left(t, t^{2}, t^{3}\right)$ from $t=0$ to $t=1$.
a. 1
b. $\frac{2}{7}$
c. $\frac{3}{7}$
d. $\frac{6}{7}$ Correct
e. $\frac{12}{7}$

Solution: The velocity is $\vec{v}=\left\langle 1,2 t, 3 t^{2}\right\rangle$. The force along the curve is $\vec{F}(\vec{r}(t))=\left\langle t^{6}, t^{5}, t^{4}\right\rangle$.
So the work done is
$W=\int_{0}^{1} \vec{F} \cdot d \vec{s}=\int_{0}^{1} \vec{F}(\vec{r}(t)) \cdot \vec{v} d t=\int_{0}^{1}\left(t^{6}+2 t^{6}+3 t^{6}\right) d t=6 \int_{0}^{1} t^{6} d t=\left[6 \frac{t^{7}}{7}\right]_{0}^{1}=\frac{6}{7}$.

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (20 pts) Consider the twisted cubic $\vec{r}=\left(3 t, 3 t^{2}, 2 t^{3}\right)$. Compute each of the following.

Note: $\quad 1+4 t^{2}+4 t^{4}=\left(1+2 t^{2}\right)^{2}$
a. (6 pts) Arc length between $(0,0,0)$ and $(3,3,2)$.

Solution: $\vec{v}=\left\langle 3,6 t, 6 t^{2}\right\rangle \quad|\vec{v}|=\sqrt{9+36 t^{2}+36 t^{4}}=3 \sqrt{1+4 t^{2}+4 t^{4}}=3 \sqrt{\left(1+2 t^{2}\right)^{2}}=3\left(1+2 t^{2}\right)$
$L=\int_{0}^{1}|\vec{v}| d t=\int_{0}^{1} 3\left(1+2 t^{2}\right) d t=3\left[t+\frac{2 t^{3}}{3}\right]_{0}^{1}=3\left[1+\frac{2}{3}\right]=5$
b. (6 pts) Curvature $\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|}$.

HINT: Factor out an 18^{2}.
Solution: $\vec{a}=\langle 0,6,12 t\rangle \quad \vec{v} \times \vec{a}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 6 t & 6 t^{2} \\ 0 & 6 & 12 t\end{array}\right|=\left\langle 72 t^{2}-36 t^{2},-36 t, 18\right\rangle=\left\langle 36 t^{2},-36 t, 18\right\rangle$
$|\vec{v} \times \vec{a}|=\sqrt{36^{2} t^{4}+36^{2} t^{2}+18^{2}}=18 \sqrt{4 t^{4}+4 t^{2}+1}=18 \sqrt{\left(1+2 t^{2}\right)^{2}}=18\left(1+2 t^{2}\right)$
$\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}=\frac{18\left(1+2 t^{2}\right)}{3^{3}\left(1+2 t^{2}\right)^{3}}=\frac{2}{3\left(1+2 t^{2}\right)^{2}}$
c. (4 pts) Tangential acceleration, a_{T}.

HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
Solution: $\quad a_{T}=\frac{d}{d t}|\vec{v}|=\frac{d}{d t} 3\left(1+2 t^{2}\right)=12 t$
d. (4 pts) Normal acceleration, a_{N}. HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.

Solution: $\quad a_{n}=\kappa|\vec{v}|^{2}=\frac{2}{3\left(1+2 t^{2}\right)^{2}} 3^{2}\left(1+2 t^{2}\right)^{2}=6$
11. (10 pts) Find the average value of the function $f(x, y, z)=y^{2}$
on the helix $\vec{r}(t)=(3 \cos t, 3 \sin t, 4 t)$ for $0 \leq t \leq 2 \pi$.
Solution: The velocity is $\vec{v}=\langle-3 \sin t, 3 \cos t, 4\rangle$. The speed is $|\vec{v}|=\sqrt{9 \sin ^{2} t+9 \cos ^{2} t+16}=5$.
The length of the curve is $L=\int_{0}^{2 \pi}|\vec{v}| d t=\int_{0}^{2 \pi} 5 d t=[5 t]_{0}^{2 \pi}=10 \pi$. The integral of f is $\int f d s=\int_{0}^{2 \pi} y^{2}|\vec{v}| d t=\int_{0}^{2 \pi} 9 \sin ^{2} t 5 d t=45 \int_{0}^{2 \pi} \frac{1-\cos (2 t)}{2} d t=\frac{45}{2}\left[t-\frac{\sin (2 t)}{2}\right]_{0}^{2 \pi}=\frac{45}{2} 2 \pi=45 \pi$ So the average value is $f_{\text {ave }}=\frac{1}{L} \int f d s=\frac{1}{10 \pi} 45 \pi=\frac{9}{2}$.
12. (10 pts) Write the vector, $\langle 1,1,3\rangle$, as a linear composition of $\langle 2,1,3\rangle$ and $\langle 3,1,2\rangle$, i.e. find a and b so that:

$$
\langle 1,1,3\rangle=a\langle 2,1,3\rangle+b\langle 3,1,2\rangle
$$

or show it cannot be done.
Solution: We need to solve the equations: $2 a+3 b=1 \quad a+b=1 \quad 3 a+2 b=3$ The first equation minus twice the second is $b=-1$. Then the second equation says $a=2$. We check the third equation: $3 a+2 b=3(2)+2(-1)=4 \neq 3$. So there is no solution.
13. (10 pts) Consider the 2 lines:

$$
\begin{array}{ll}
L_{1}(t): & (x, y, z)=(7+2 t, 4+t, 3+t) \\
L_{2}(t): & (x, y, z)=(5-2 t, 1+t,-2+3 t)
\end{array}
$$

Determine if they are parallel, intersecting or skew. If they intersect, find the point of intersection.
You MUST show why they are or are not parallel or skew.
Solution: The direction vectors are $\vec{v}_{1}=\langle 2,1,1\rangle$ and $\vec{v}_{2}=\langle-2,1,3\rangle$.
Since these are not proportional, the lines are not parallel.
We equate the x, y and z components of the lines and change the second parameter to s :

$$
\begin{aligned}
7+2 t & =5-2 s \\
4+t & =1+s \\
3+t & =-2+3 s
\end{aligned}
$$

The second equation says $s=3+t$. We substitute into the first equation and solve for t and s :

$$
7+2 t=5-2(3+t)=-1-2 t \quad \Rightarrow \quad 4 t=-8 \quad t=-2 \quad s=1
$$

The points on the lines with these parameter vaues are:

$$
\begin{aligned}
L_{1}(-2): & & (x, y, z)=(7+2(-2), 4+(-2), 3+(-2))=(3,2,1) \\
L_{2}(1): & & (x, y, z)=(5-2(1), 1+(1),-2+3(1))=(3,2,1)
\end{aligned}
$$

Since these are equal, they are not skew and they intersect at $\quad(x, y, z)=(3,2,1)$.

