Name Section:	
---------------	--

N 4 A TI I OO 4	_ ^	\ / · A
MATH 221	Exam 2,	Version A

Fall 2023

1-8	
9	

Multiple Choice: (6 points each. No part credit.)

- 1. Consider the function $z = f(x,y) = xy^3$. Its *y*-trace with x = 2 is the intersection of the graph of z = f(x,y) and the plane x = 2. Find the slope of this *y*-trace at y = 3.
 - **a**. 8
 - **b**. 24
 - **c**. 27
 - **d**. 54
 - **e**. 96

2. Consider the limit $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^4+y^2}.$

Which of the following paths of approach gives a different value of the limit?

- **b**. $y = x^2 + x^3$ & $x \to 0$
- **c.** $y = x^2 + x$ & $x \to 0$
- **d**. $y = x^2$ & $x \to 0$
- e. They are all equal.

Hint: Don't bother multiplying out any quadratic.

3. Find the plane tangent to the graph of the function $z = x^2 e^{(2y-4)}$ at the point (3,2). Its *z*-intercept is

a.
$$c = -45$$

b.
$$c = -33$$

c.
$$c = -9$$

d.
$$c = 9$$

e.
$$c = 33$$

4. If two resistors, with resistances R_1 and R_2 are connected in parallel, then the total resistance R satisfies:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 or $R = \frac{R_1 R_2}{R_1 + R_2}$

Currently $R_1=200$ ohms and $R_2=400$ ohms. If they increase by $\Delta R_1=1.8$ ohms and $\Delta R_2=0.9$ ohms, use the linear approximation to approximate how much R changes.

- **a**. $\Delta R \approx 0.1$ ohms
- **b**. $\Delta R \approx 0.3$ ohms
- **c**. $\Delta R \approx 0.6$ ohms
- **d**. $\Delta R \approx 0.9$ ohms
- **e**. $\Delta R \approx 1.8$ ohms

- **5**. Let $f(x,y) = x \sin(xy)$. Compute $f_{xy}\left(2, \frac{\pi}{8}\right)$.
 - **a**. $2\sqrt{2} + \frac{1}{4}\sqrt{2}\pi$
 - **b**. $2\sqrt{2} \frac{1}{4}\sqrt{2}\pi$
 - **c**. $-2\sqrt{2} + \frac{1}{4}\sqrt{2}\pi$
 - **d**. $-2\sqrt{2} \frac{1}{4}\sqrt{2}\pi$

6. If the focal length of a lens is f and an object is placed a distance u from the lens, then the image of the object will appear to be a distance v from the lens related by

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$
 or $v = \frac{fu}{u - f}$

Consider a lens with an adjustable focal length.

Currently, f = 2 cm, u = 8 cm and $v = \frac{8}{3}$ cm.

If f and u are increasing at $\frac{df}{dt} = 0.9 \frac{\text{cm}}{\text{sec}}$

and $\frac{du}{dt} = 1.8 \frac{\text{cm}}{\text{sec}}$, at what rate is v changing?

a.
$$\frac{dv}{dt} = 1 \frac{\text{cm}}{\text{sec}}$$

b.
$$\frac{dv}{dt} = 1.2 \frac{\text{cm}}{\text{sec}}$$

c.
$$\frac{dv}{dt} = 1.4 \frac{\text{cm}}{\text{sec}}$$

d.
$$\frac{dv}{dt} = 1.6 \frac{\text{cm}}{\text{sec}}$$

- 7. Find the equation of the plane tangent to $x^2z^2 yz = 3$ at the point P = (1, 2, 3). It's z-intercept is:
 - **a**. c = 3
 - **b**. c = 4
 - **c**. c = 6
 - **d**. c = 12
 - **e**. c = 24

- **8**. The point (x,y) = (1,1) is a critical point of the function $f(x,y) = 3x^2 6xy 2y^3 + 6y^2$. Use the Second Derivative Test to classify this critical point.
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails

Work Out: (Points indicated. Part credit possible. Show all work.)

9. (36 pts) Obi-Two is flying the Centurion Eagle through the Force, Desperation and Luck fields. The Force, F, depends on the Desperation, D, and Luck, L, by the relation: $F = D^3L$. Currently, the Desperation and Luck and their gradients are:

$$D = 2 \qquad \overrightarrow{\nabla}D = \langle 0, 1, 2 \rangle$$
$$L = 3 \qquad \overrightarrow{\nabla}L = \langle 3, 1, 0 \rangle$$

a. (23 pts) Obi-Two's current velocity is $\vec{v} = \langle 2, 1, 3 \rangle$. Find the rate that Obi-Two sees the Force changing.

b. (13 pts) In what direction should Obi-Two travel to increase the Force as fast as possible? HINT: Compute each (x, y, z) partial derivative separately.

10. (20 pts) Find the largest value of the function $f = xy^2z^4$ on the ellipsoid:

$$\frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{2} = \frac{7}{2}$$

