Name \qquad Section: \qquad
MATH 221 Exam 2, Version A
Fall 2023
502,503
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

$1-8$	$/ 48$	10	$/ 20$
9	$/ 36$	Total	$/ 104$

1. Consider the function $z=f(x, y)=x y^{3}$. Its y-trace with $x=2$ is the intersection of the graph of $z=f(x, y)$ and the plane $x=2$. Find the slope of this y-trace at $y=3$.
a. 8
b. 24
c. 27
d. 54
e. 96
2. Consider the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{4}+y^{2}}$.

Which of the following paths of approach gives a different value of the limit?
a. $y=2 x \quad \& \quad x \rightarrow 0$
b. $y=x^{2}+x^{3} \quad \& \quad x \rightarrow 0$
c. $y=x^{2}+x \quad \& \quad x \rightarrow 0$
d. $y=x^{2} \quad \& \quad x \rightarrow 0$
e. They are all equal.

Hint: Don't bother multiplying out any quadratic.
3. Find the plane tangent to the graph of the function $z=x^{2} e^{(2 y-4)}$ at the point $(3,2)$. Its z-intercept is
a. $c=-45$
b. $c=-33$
c. $c=-9$
d. $c=9$
e. $c=33$
4. If two resistors, with resistances R_{1} and R_{2} are connected in parallel, then the total resistance R satisfies:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \text { or } \quad R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Currently $R_{1}=200$ ohms and $R_{2}=400$ ohms. If they increase by $\Delta R_{1}=1.8$ ohms and
$\Delta R_{2}=0.9$ ohms, use the linear approximation
 to approximate how much R changes.
a. $\Delta R \approx 0.1$ ohms
b. $\Delta R \approx 0.3$ ohms
c. $\Delta R \approx 0.6 \mathrm{ohms}$
d. $\Delta R \approx 0.9$ ohms
e. $\Delta R \approx 1.8$ ohms
5. Let $f(x, y)=x \sin (x y)$. Compute $f_{x y}\left(2, \frac{\pi}{8}\right)$.
a. $2 \sqrt{2}+\frac{1}{4} \sqrt{2} \pi$
b. $2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi$
c. $-2 \sqrt{2}+\frac{1}{4} \sqrt{2} \pi$
d. $-2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi$
6. If the focal length of a lens is f and an object is placed a distance u from the lens, then the image of the object will appear to be a distance v from the lens related by

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v} \quad \text { or } \quad v=\frac{f u}{u-f}
$$

Consider a lens with an adjustable focal length.
Currently, $f=2 \mathrm{~cm}, u=8 \mathrm{~cm}$ and $v=\frac{8}{3} \mathrm{~cm}$.

If f and u are increasing at $\frac{d f}{d t}=0.9 \frac{\mathrm{~cm}}{\mathrm{sec}}$ and $\frac{d u}{d t}=1.8 \frac{\mathrm{~cm}}{\mathrm{sec}}$, at what rate is v changing?
a. $\frac{d v}{d t}=1 \frac{\mathrm{~cm}}{\mathrm{sec}}$
b. $\frac{d v}{d t}=1.2 \frac{\mathrm{~cm}}{\mathrm{sec}}$
c. $\frac{d v}{d t}=1.4 \frac{\mathrm{~cm}}{\mathrm{sec}}$
d. $\frac{d v}{d t}=1.6 \frac{\mathrm{~cm}}{\mathrm{sec}}$
e. $\frac{d v}{d t}=1.8 \frac{\mathrm{~cm}}{\mathrm{sec}}$
7. Find the equation of the plane tangent to $x^{2} z^{2}-y z=3$ at the point $P=(1,2,3)$. It's z-intercept is:
a. $c=3$
b. $c=4$
c. $c=6$
d. $c=12$
e. $c=24$
8. The point $(x, y)=(1,1)$ is a critical point of the function $f(x, y)=3 x^{2}-6 x y-2 y^{3}+6 y^{2}$. Use the Second Derivative Test to classify this critical point.
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test Fails
9. (36 pts) Obi-Two is flying the Centurion Eagle through the Force, Desperation and Luck fields. The Force, F, depends on the Desperation, D, and Luck, L, by the relation: $F=D^{3} L$. Currently, the Desperation and Luck and their gradients are:

$$
\begin{aligned}
D & =2 & \vec{\nabla} D & =\langle 0,1,2\rangle \\
L & =3 & \vec{\nabla} L & =\langle 3,1,0\rangle
\end{aligned}
$$

a. (23 pts) Obi-Two's current velocity is $\vec{v}=\langle 2,1,3\rangle$. Find the rate that Obi-Two sees the Force changing.
b. (13 pts) In what direction should Obi-Two travel to increase the Force as fast as possible? HINT: Compute each (x, y, z) partial derivative separately.
10. (20 pts) Find the largest value of the function $f=x y^{2} z^{4}$ on the ellipsoid:

$$
\frac{x^{2}}{2}+\frac{y^{2}}{4}+\frac{z^{2}}{2}=\frac{7}{2}
$$

