Name		Section:				
MATH 221	Exam 2, Version A	Fall 2023	1-8	/48	10	/20
502,503	Solutions	P. Yasskin	9	/36	Total	/104

Multiple Choice: (6 points each. No part credit.)

- **1**. Consider the function $z = f(x, y) = xy^3$. Its *y*-trace with x = 2 is the intersection of the graph of z = f(x, y) and the plane x = 2. Find the slope of this *y*-trace at y = 3.
 - **a**. 8
 - **b**. 24
 - **c**. 27
 - d. 54 Correct
 - **e**. 96

Solution: The slope of the *y*-trace is the *y*-partial derivative Here it is $f_y(x,y) = 3xy^2$. So the slope of the *y*-trace with x = 2 at y = 3 is $f_y(2,3) = 3 \cdot 2 \cdot 3^2 = 54$.

2. Consider the limit $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^4+y^2}$.

Which of the following paths of approach gives a different value of the limit?

- **a**. y = 2x **&** $x \to 0$
- **b**. $y = x^2 + x^3$ & $x \to 0$
- **c**. $y = x^2 + x$ & $x \to 0$

d.
$$y = x^2$$
 & $x \to 0$

e. They are all equal. Correct

Hint: Don't bother multiplying out any quadratic.

Solution:

$$\lim_{\substack{y=2x\\x\to0}} \frac{xy^2}{x^4 + y^2} = \lim_{x\to0} \frac{x4x^2}{x^4 + 4x^2} = \lim_{x\to0} \frac{4x}{x^2 + 4} = 0$$
$$\lim_{\substack{y=x^2+x^3\\x\to0}} \frac{xy^2}{x^4 + y^2} = \lim_{x\to0} \frac{x(x^2 + x^3)^2}{x^4 + (x^2 + x^3)^2} = \lim_{x\to0} \frac{x(1 + x)^2}{1 + (1 + x)^2} = 0$$
$$\lim_{\substack{y=x^2+x\\x\to0}} \frac{xy^2}{x^4 + y^2} = \lim_{x\to0} \frac{x(x^2 + x)^2}{x^4 + (x^2 + x)^2} = \lim_{x\to0} \frac{x(x + 1)^2}{x^2 + (x + 1)^2} = 0$$
$$\lim_{\substack{y=x^3\\x\to0}} \frac{xy^2}{x^4 + y^2} = \lim_{x\to0} \frac{x(x^3)^2}{x^4 + (x^3)^2} = \lim_{x\to0} \frac{x^3}{1 + x^2} = 0$$

- **3**. Find the plane tangent to the graph of the function $z = x^2 e^{(2y-4)}$ at the point (3,2). Its *z*-intercept is
 - **a**. c = -45 Correct **b**. c = -33 **c**. c = -9**d**. c = 9
 - **e**. *c* = 33

Solution: $f(x,y) = x^2 e^{(2y-4)}$ f(3,2) = 9 $f_x(x,y) = 2xe^{(2y-4)}$ $f_x(3,2) = 6$ $f_y(x,y) = x^2 2e^{(2y-4)}$ $f_y(3,2) = 18$ $z = f(3,2) + f_x(3,2)(x-3) + f_y(3,2)(y-2) = 9 + 6(x-3) + 18(y-2)$ = 6x + 18y + 9 - 18 - 36 = 6x + 18y - 45 c = -45

4. If two resistors, with resistances *R*₁ and *R*₂ are connected in parallel, then the total resistance *R* satisfies:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 or $R = \frac{R_1 R_2}{R_1 + R_2}$

Currently $R_1 = 200$ ohms and $R_2 = 400$ ohms. If they increase by $\Delta R_1 = 1.8$ ohms and $\Delta R_2 = 0.9$ ohms, use the linear approximation to approximate how much *R* changes.

- **a**. $\Delta R \approx 0.1$ ohms
- **b**. $\Delta R \approx 0.3$ ohms
- **c**. $\Delta R \approx 0.6$ ohms
- **d**. $\Delta R \approx 0.9$ ohms Correct
- **e**. $\Delta R \approx 1.8$ ohms

Solution: The derivatives of *R* are

 $\frac{\partial R}{\partial R_1} = \frac{(R_1 + R_2)R_2 - R_1R_2(1)}{(R_1 + R_2)^2} = \frac{R_2^2}{(R_1 + R_2)^2} = \frac{400^2}{600^2} = \frac{4}{9} \qquad \frac{\partial R}{\partial R_2} = \frac{R_1^2}{(R_1 + R_2)^2} = \frac{200^2}{600^2} = \frac{1}{9}$ The change in R is approximately its differential:

$$\Delta R \approx dR = \frac{\partial R}{\partial R_1} dR_1 + \frac{\partial R}{\partial R_2} dR_2 = \frac{4}{9} 1.8 + \frac{1}{9} 0.9 = 0.9 \text{ ohms}$$

- 5. Let $f(x,y) = x \sin(xy)$. Compute $f_{xy}\left(2, \frac{\pi}{8}\right)$.
 - **a**. $2\sqrt{2} + \frac{1}{4}\sqrt{2}\pi$ **b.** $2\sqrt{2} - \frac{1}{4}\sqrt{2}\pi$ Correct **c**. $-2\sqrt{2} + \frac{1}{4}\sqrt{2}\pi$ **d**. $-2\sqrt{2} - \frac{1}{4}\sqrt{2}\pi$

Solution: It's easier to compute f_{yx} . $f_y = x^2 \cos(xy)$ $f_{yx} = 2x \cos(xy) - x^2y \sin(xy)$ $f_{yx}\left(2,\frac{\pi}{8}\right) = 4\cos\left(\frac{\pi}{4}\right) - 4\frac{\pi}{8}\sin\left(\frac{\pi}{4}\right) = 2\sqrt{2} - \frac{1}{4}\sqrt{2}\pi$

- If the focal length of a lens is f and an object 6. is placed a distance u from the lens, then the image of the object will appear to be a distance v from the lens related by

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$
 or $v = \frac{fu}{u-f}$

Consider a lens with an adjustable focal length.

Currently, f = 2 cm, u = 8 cm and $v = \frac{8}{3} \text{ cm}$. If f and u are increasing at $\frac{df}{dt} = 0.9 \frac{\text{cm}}{\text{sec}}$

and
$$\frac{du}{dt} = 1.8 \frac{\text{cm}}{\text{sec}}$$
, at what rate is v changing?
a. $\frac{dv}{dt} = 1 \frac{\text{cm}}{\text{sec}}$
b. $\frac{dv}{dt} = 1.2 \frac{\text{cm}}{\text{sec}}$
c. $\frac{dv}{dt} = 1.4 \frac{\text{cm}}{\text{sec}}$ Correct
d. $\frac{dv}{dt} = 1.6 \frac{\text{cm}}{\text{sec}}$

e.
$$\frac{dv}{dt} = 1.8 \frac{\text{cm}}{\text{sec}}$$

Solution: We take the time derivative of the relation:

$$-\frac{1}{f^2}\frac{df}{dt} = -\frac{1}{u^2}\frac{du}{dt} - \frac{1}{v^2}\frac{dv}{dt}$$

and solve for $\frac{dv}{dt}$

$$\frac{dv}{dt} = \frac{v^2}{f^2} \frac{df}{dt} - \frac{v^2}{u^2} \frac{du}{dt} = \left(\frac{8}{3}\right)^2 \frac{1}{2^2} 0.9 - \left(\frac{8}{3}\right)^2 \frac{1}{8^2} 1.8 = \left(\frac{4}{3}\right)^2 0.9 - \left(\frac{1}{3}\right)^2 1.8$$

16 \cdot 0.1 - 0.2 = 1.4 $\frac{\text{cm}}{\text{sec}}$

- 7. Find the equation of the plane tangent to $x^2z^2 yz = 3$ at the point P = (1, 2, 3). It's *z*-intercept is:
 - a. c = 3
 b. c = 4
 - **c**. c = 6 Correct
 - **d**. *c* = 12
 - **e**. *c* = 24

Solution: Let $F(x,y,x) = x^2z^2 - yz$. Then $\vec{\nabla}F = \langle 2xz^2, -z, 2x^2z - y \rangle$ and $\vec{N} = \vec{\nabla}F \Big|_P = \langle 18, -3, 4 \rangle$. So the plane is $\vec{N} \cdot X = \vec{N} \cdot P$ or $18x - 3y + 4z = 18 \cdot 1 - 3 \cdot 2 + 4 \cdot 3 = 24$ The *z*-intercept occurs when x = y = 0. So the *z*-intercept is $c = \frac{24}{4} = 6$.

- **8**. The point (x,y) = (1,1) is a critical point of the function $f(x,y) = 3x^2 6xy 2y^3 + 6y^2$. Use the Second Derivative Test to classify this critical point.
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. Saddle Point Correct
 - e. Test Fails

Solution: $f_x = 6x - 6y$ $f_y = -6x - 6y^2 + 12y$ We check: $f_x(1,1) = 6 - 6 = 0$ $f_y(1,1) = -6 - 6 + 12 = 0$, Yes, it's a critical point. $f_{xx} = 6$ $f_{yy} = -12y$ $f_{xy} = -6$ $f_{xx}(1,1) = 6$ $f_{yy}(1,1) = -12$ $f_{xy}(1,1) = -6$ $D = f_{xx}f_{yy} - f_{xy}^2 = (6)(-12) - (-6)^2 = -72 - 36 < 0$ SaddlePoint **9**. (36 pts) Obi-Two is flying the Centurion Eagle through the Force, Desperation and Luck fields. The Force, *F*, depends on the Desperation, *D*, and Luck, *L*, by the relation: $F = D^3L$. Currently, the Desperation and Luck and their gradients are:

$$D = 2 \qquad \vec{\nabla}D = \langle 0, 1, 2 \rangle$$
$$L = 3 \qquad \vec{\nabla}L = \langle 3, 1, 0 \rangle$$

a. (23 pts) Obi-Two's current velocity is $\vec{v} = \langle 2, 1, 3 \rangle$. Find the rate that Obi-Two sees the Force changing.

Solution: The partial derivatives of \vec{F} are:

$$\frac{\partial F}{\partial D} = 3D^2L = 3 \cdot 2^2 \cdot 3 = 36 \qquad \frac{\partial F}{\partial L} = D^3 = 2^2 = 8$$

The derivatives of x, y, z, D and L are components of the velocity and the gradients. So by the Chain Rule, the derivative of F is:

$$\frac{dF}{dt} = \frac{\partial F}{\partial D} \left(\frac{\partial D}{\partial x} \frac{dx}{dt} + \frac{\partial D}{\partial y} \frac{dy}{dt} + \frac{\partial D}{\partial z} \frac{dz}{dt} \right) + \frac{\partial F}{\partial L} \left(\frac{\partial L}{\partial x} \frac{dx}{dt} + \frac{\partial L}{\partial y} \frac{dy}{dt} + \frac{\partial L}{\partial z} \frac{dz}{dt} \right)$$
$$= 36(1 \cdot 1 + 2 \cdot 3) + 8(3 \cdot 2 + 1 \cdot 1) = 252 + 56 = 308$$

b. (13 pts) In what direction should Obi-Two travel to increase the Force as fast as possible? HINT: Compute each (x, y, z) partial derivative separately.

Solution: The partial derivatives of \vec{F} are:

$$\frac{\partial F}{\partial D} = 3D^2L = 3 \cdot 2^2 \cdot 3 = 36 \qquad \frac{\partial F}{\partial L} = D^3 = 2^2 = 8$$

The components of the gradient are the (x,y,z) partial derivatives of \vec{F} :

$$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial D} \frac{\partial D}{\partial x} + \frac{\partial F}{\partial L} \frac{\partial L}{\partial x} = 36 \cdot 0 + 8 \cdot 3 = 24$$
$$\frac{\partial F}{\partial y} = \frac{\partial F}{\partial D} \frac{\partial D}{\partial y} + \frac{\partial F}{\partial L} \frac{\partial L}{\partial y} = 36 \cdot 1 + 8 \cdot 1 = 44$$
$$\frac{\partial F}{\partial z} = \frac{\partial F}{\partial D} \frac{\partial D}{\partial z} + \frac{\partial F}{\partial L} \frac{\partial L}{\partial z} = 36 \cdot 2 + 8 \cdot 0 = 72$$

The Force increases fastest in the direction $\vec{\nabla}F = \langle 24, 44, 72 \rangle$. Alternatively:

$$\vec{\nabla}F = \frac{\partial F}{\partial D}\vec{\nabla}D + \frac{\partial F}{\partial L}\vec{\nabla}L$$

10. (20 pts) Find the largest value of the function $f = xy^2z^4$ on the ellipsoid:

$$\frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{2} = \frac{7}{2}$$

Solution: We maximize $f = xy^2z^4$ with the constraint $g = \frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{2} = \frac{7}{2}$. The gradients are:

 $\vec{\nabla}f = \langle y^2 z^4, 2xyz^4, 4xy^2 z^3 \rangle \qquad \vec{\nabla}g = \langle x, \frac{y}{2}, z \rangle \qquad \text{The Lagrange equations are;}$ $y^2 z^4 = \lambda x \qquad 2xyz^4 = \lambda \frac{y}{2} \qquad 4xy^2 z^3 = \lambda z$

Multiply the first by x, the second by $\frac{y}{2}$ and the third by $\frac{z}{4}$ and equate:

$$xy^{2}z^{4} = \lambda x^{2} = \lambda \frac{y^{2}}{4} = \lambda \frac{z^{2}}{4} \qquad \text{So} \quad x^{2} = \frac{z^{2}}{4} \qquad y^{2} = z^{2} \qquad \text{Plug into the constraint:}$$

$$\frac{x^{2}}{2} + \frac{y^{2}}{4} + \frac{z^{2}}{2} = \frac{z^{2}}{8} + \frac{z^{2}}{4} + \frac{z^{2}}{2} = \frac{7}{8}z^{2} = \frac{7}{2} \qquad z^{2} = 4$$

$$z = 2 \qquad x = \frac{1}{2}z = 1 \qquad y = z = 2 \qquad f = 1 \cdot 2^{2} \cdot 2^{4} = 2^{6} = 64$$