Name
Section: \qquad
MATH 221
Exam 2, Version A
Fall 2023
502,503
Solutions
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1. Consider the function $z=f(x, y)=x y^{3}$. Its y-trace with $x=2$ is the intersection of the graph of $z=f(x, y)$ and the plane $x=2$. Find the slope of this y-trace at $y=3$.
a. 8
b. 24
c. 27
d. 54

Correct
e. 96

Solution: The slope of the y-trace is the y-partial derivative Here it is $f_{y}(x, y)=3 x y^{2}$. So the slope of the y-trace with $x=2$ at $y=3$ is $f_{y}(2,3)=3 \cdot 2 \cdot 3^{2}=54$.
2. Consider the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{4}+y^{2}}$.

Which of the following paths of approach gives a different value of the limit?
a. $y=2 x \quad \& \quad x \rightarrow 0$
b. $y=x^{2}+x^{3} \quad \& \quad x \rightarrow 0$
c. $y=x^{2}+x \quad \& \quad x \rightarrow 0$
d. $y=x^{2} \quad \& \quad x \rightarrow 0$
e. They are all equal. Correct

Hint: Don't bother multiplying out any quadratic.

Solution:

$$
\begin{aligned}
& \lim _{\substack{y=2 x \\
x \rightarrow 0}} \frac{x y^{2}}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x 4 x^{2}}{x^{4}+4 x^{2}}=\lim _{x \rightarrow 0} \frac{4 x}{x^{2}+4}=0 \\
& \lim _{\substack{y=x^{2}+x^{3} \\
x \rightarrow 0}} \frac{x y^{2}}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x\left(x^{2}+x^{3}\right)^{2}}{x^{4}+\left(x^{2}+x^{3}\right)^{2}}=\lim _{x \rightarrow 0} \frac{x(1+x)^{2}}{1+(1+x)^{2}}=0 \\
& \lim _{y=x^{2}+x} \frac{x y^{2}}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x\left(x^{2}+x\right)^{2}}{x^{4}+\left(x^{2}+x\right)^{2}}=\lim _{x \rightarrow 0} \frac{x(x+1)^{2}}{x^{2}+(x+1)^{2}}=0 \\
& \lim _{\substack{y=x^{3} \\
x \rightarrow 0}} \frac{x y^{2}}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x\left(x^{3}\right)^{2}}{x^{4}+\left(x^{3}\right)^{2}}=\lim _{x \rightarrow 0} \frac{x^{3}}{1+x^{2}}=0
\end{aligned}
$$

3. Find the plane tangent to the graph of the function $z=x^{2} e^{(2 y-4)}$ at the point $(3,2)$. Its z-intercept is
a. $c=-45 \quad$ Correct
b. $c=-33$
c. $c=-9$
d. $c=9$
e. $c=33$

Solution: $f(x, y)=x^{2} e^{(2 y-4)} \quad f(3,2)=9$

$$
\begin{gathered}
f_{x}(x, y)=2 x e^{(2 y-4)} \quad f_{x}(3,2)=6 \quad f_{y}(x, y)=x^{2} 2 e^{(2 y-4)} \quad f_{y}(3,2)=18 \\
z=f(3,2)+f_{x}(3,2)(x-3)+f_{y}(3,2)(y-2)=9+6(x-3)+18(y-2) \\
=6 x+18 y+9-18-36=6 x+18 y-45 \quad c=-45
\end{gathered}
$$

4. If two resistors, with resistances R_{1} and R_{2} are connected in parallel, then the total resistance R satisfies:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \text { or } \quad R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Currently $R_{1}=200$ ohms and $R_{2}=400$ ohms.
If they increase by $\Delta R_{1}=1.8$ ohms and
$\Delta R_{2}=0.9$ ohms, use the linear approximation
 to approximate how much R changes.
a. $\Delta R \approx 0.1$ ohms
b. $\Delta R \approx 0.3$ ohms
c. $\Delta R \approx 0.6$ ohms
d. $\Delta R \approx 0.9$ ohms

Correct

e. $\Delta R \approx 1.8$ ohms

Solution: The derivatives of R are
$\frac{\partial R}{\partial R_{1}}=\frac{\left(R_{1}+R_{2}\right) R_{2}-R_{1} R_{2}(1)}{\left(R_{1}+R_{2}\right)^{2}}=\frac{R_{2}^{2}}{\left(R_{1}+R_{2}\right)^{2}}=\frac{400^{2}}{600^{2}}=\frac{4}{9} \quad \frac{\partial R}{\partial R_{2}}=\frac{R_{1}^{2}}{\left(R_{1}+R_{2}\right)^{2}}=\frac{200^{2}}{600^{2}}=\frac{1}{9}$
The change in R is approximately its differential:

$$
\Delta R \approx d R=\frac{\partial R}{\partial R_{1}} d R_{1}+\frac{\partial R}{\partial R_{2}} d R_{2}=\frac{4}{9} 1.8+\frac{1}{9} 0.9=0.9 \text { ohms }
$$

5. Let $f(x, y)=x \sin (x y)$. Compute $f_{x y}\left(2, \frac{\pi}{8}\right)$.
a. $2 \sqrt{2}+\frac{1}{4} \sqrt{2} \pi$
b. $2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi \quad$ Correct
c. $-2 \sqrt{2}+\frac{1}{4} \sqrt{2} \pi$
d. $-2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi$

Solution: It's easier to compute $f_{y x}$. $\quad f_{y}=x^{2} \cos (x y) \quad f_{y x}=2 x \cos (x y)-x^{2} y \sin (x y)$
$f_{y x}\left(2, \frac{\pi}{8}\right)=4 \cos \left(\frac{\pi}{4}\right)-4 \frac{\pi}{8} \sin \left(\frac{\pi}{4}\right)=2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi$
6. If the focal length of a lens is f and an object is placed a distance u from the lens, then the image of the object will appear to be a distance v from the lens related by

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v} \quad \text { or } \quad v=\frac{f u}{u-f}
$$

Consider a lens with an adjustable focal length.
Currently, $f=2 \mathrm{~cm}, u=8 \mathrm{~cm}$ and $v=\frac{8}{3} \mathrm{~cm}$.

If f and u are increasing at $\frac{d f}{d t}=0.9 \frac{\mathrm{~cm}}{\mathrm{sec}}$
and $\frac{d u}{d t}=1.8 \frac{\mathrm{~cm}}{\mathrm{sec}}$, at what rate is v changing?
a. $\frac{d v}{d t}=1 \frac{\mathrm{~cm}}{\mathrm{sec}}$
b. $\frac{d v}{d t}=1.2 \frac{\mathrm{~cm}}{\mathrm{sec}}$
c. $\frac{d v}{d t}=1.4 \frac{\mathrm{~cm}}{\mathrm{sec}} \quad$ Correct
d. $\frac{d v}{d t}=1.6 \frac{\mathrm{~cm}}{\mathrm{sec}}$
e. $\frac{d v}{d t}=1.8 \frac{\mathrm{~cm}}{\mathrm{sec}}$

Solution: We take the time derivative of the relation:

$$
-\frac{1}{f^{2}} \frac{d f}{d t}=-\frac{1}{u^{2}} \frac{d u}{d t}-\frac{1}{v^{2}} \frac{d v}{d t}
$$

and solve for $\frac{d v}{d t}$

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{v^{2}}{f^{2}} \frac{d f}{d t}-\frac{v^{2}}{u^{2}} \frac{d u}{d t}=\left(\frac{8}{3}\right)^{2} \frac{1}{2^{2}} 0.9-\left(\frac{8}{3}\right)^{2} \frac{1}{8^{2}} 1.8=\left(\frac{4}{3}\right)^{2} 0.9-\left(\frac{1}{3}\right)^{2} 1.8 \\
& 16 \cdot 0.1-0.2=1.4 \frac{\mathrm{~cm}}{\mathrm{sec}}
\end{aligned}
$$

7. Find the equation of the plane tangent to $x^{2} z^{2}-y z=3$ at the point $P=(1,2,3)$. It's z-intercept is:
a. $c=3$
b. $c=4$
c. $c=6$ Correct
d. $c=12$
e. $c=24$

Solution: Let $F(x, y, x)=x^{2} z^{2}-y z$. Then $\vec{\nabla} F=\left\langle 2 x z^{2},-z, 2 x^{2} z-y\right\rangle$ and $\vec{N}=\left.\vec{\nabla} F\right|_{P}=\langle 18,-3,4\rangle$. So the plane is $\vec{N} \cdot X=\vec{N} \cdot P$ or
$18 x-3 y+4 z=18 \cdot 1-3 \cdot 2+4 \cdot 3=24$
The z-intercept occurs when $x=y=0$. So the z-intercept is $c=\frac{24}{4}=6$.
8. The point $(x, y)=(1,1)$ is a critical point of the function $f(x, y)=3 x^{2}-6 x y-2 y^{3}+6 y^{2}$. Use the Second Derivative Test to classify this critical point.
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point Correct
e. Test Fails

Solution: $f_{x}=6 x-6 y \quad f_{y}=-6 x-6 y^{2}+12 y$
We check: $f_{x}(1,1)=6-6=0 \quad f_{y}(1,1)=-6-6+12=0$, Yes, it's a critical point.
$f_{x x}=6 \quad f_{y y}=-12 y \quad f_{x y}=-6$
$f_{x x}(1,1)=6 \quad f_{y y}(1,1)=-12 \quad f_{x y}(1,1)=-6$
$D=f_{x x} f_{y y}-f_{x y}{ }^{2}=(6)(-12)-(-6)^{2}=-72-36<0 \quad$ SaddlePoint
9. (36 pts) Obi-Two is flying the Centurion Eagle through the Force, Desperation and Luck fields. The Force, F, depends on the Desperation, D, and Luck, L, by the relation: $F=D^{3} L$.
Currently, the Desperation and Luck and their gradients are:

$$
\begin{aligned}
D & =2 & \vec{\nabla} D & =\langle 0,1,2\rangle \\
L & =3 & \vec{\nabla} L & =\langle 3,1,0\rangle
\end{aligned}
$$

a. (23 pts) Obi-Two's current velocity is $\vec{v}=\langle 2,1,3\rangle$. Find the rate that Obi-Two sees the Force changing.

Solution: The partial derivatives of \vec{F} are:

$$
\frac{\partial F}{\partial D}=3 D^{2} L=3 \cdot 2^{2} \cdot 3=36 \quad \frac{\partial F}{\partial L}=D^{3}=2^{2}=8
$$

The derivatives of x, y, z, D and L are components of the velocity and the gradients. So by the Chain Rule, the derivative of F is:

$$
\begin{aligned}
\frac{d F}{d t} & =\frac{\partial F}{\partial D}\left(\frac{\partial D}{\partial x} \frac{d x}{d t}+\frac{\partial D}{\partial y} \frac{d y}{d t}+\frac{\partial D}{\partial z} \frac{d z}{d t}\right)+\frac{\partial F}{\partial L}\left(\frac{\partial L}{\partial x} \frac{d x}{d t}+\frac{\partial L}{\partial y} \frac{d y}{d t}+\frac{\partial L}{\partial z} \frac{d z}{d t}\right) \\
& =36(1 \cdot 1+2 \cdot 3)+8(3 \cdot 2+1 \cdot 1)=252+56=308
\end{aligned}
$$

b. (13 pts) In what direction should Obi-Two travel to increase the Force as fast as possible? HINT: Compute each (x, y, z) partial derivative separately.

Solution: The partial derivatives of \vec{F} are:

$$
\frac{\partial F}{\partial D}=3 D^{2} L=3 \cdot 2^{2} \cdot 3=36 \quad \frac{\partial F}{\partial L}=D^{3}=2^{2}=8
$$

The components of the gradient are the (x, y, z) partial derivatives of \vec{F} :

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=\frac{\partial F}{\partial D} \frac{\partial D}{\partial x}+\frac{\partial F}{\partial L} \frac{\partial L}{\partial x}=36 \cdot 0+8 \cdot 3=24 \\
& \frac{\partial F}{\partial y}=\frac{\partial F}{\partial D} \frac{\partial D}{\partial y}+\frac{\partial F}{\partial L} \frac{\partial L}{\partial y}=36 \cdot 1+8 \cdot 1=44 \\
& \frac{\partial F}{\partial z}=\frac{\partial F}{\partial D} \frac{\partial D}{\partial z}+\frac{\partial F}{\partial L} \frac{\partial L}{\partial z}=36 \cdot 2+8 \cdot 0=72
\end{aligned}
$$

The Force increases fastest in the direction $\vec{\nabla} F=\langle 24,44,72\rangle$.
Alternatively:

$$
\vec{\nabla} F=\frac{\partial F}{\partial D} \vec{\nabla} D+\frac{\partial F}{\partial L} \vec{\nabla} L
$$

10. (20 pts) Find the largest value of the function $f=x y^{2} z^{4}$ on the ellipsoid:

$$
\frac{x^{2}}{2}+\frac{y^{2}}{4}+\frac{z^{2}}{2}=\frac{7}{2}
$$

Solution: We maximize $f=x y^{2} z^{4}$ with the constraint $g=\frac{x^{2}}{2}+\frac{y^{2}}{4}+\frac{z^{2}}{2}=\frac{7}{2}$. The gradients are:

$$
\begin{array}{ll}
\vec{\nabla} f=\left\langle y^{2} z^{4}, 2 x y z^{4}, 4 x y^{2} z^{3}\right\rangle & \vec{\nabla} g=\left\langle x, \frac{y}{2}, z\right\rangle \\
y^{2} z^{4}=\lambda x & 2 x y z^{4}=\lambda \frac{y}{2} \\
4 x y^{2} z^{3}=\lambda z
\end{array}
$$

Multiply the first by x, the second by $\frac{y}{2}$ and the third by $\frac{z}{4}$ and equate:

$$
\begin{array}{llll}
x y^{2} z^{4}=\lambda x^{2}=\lambda \frac{y^{2}}{4}=\lambda \frac{z^{2}}{4} & \text { So } x^{2}=\frac{z^{2}}{4} & y^{2}=z^{2} \quad \quad \text { Plug intc } \\
\frac{x^{2}}{2}+\frac{y^{2}}{4}+\frac{z^{2}}{2}=\frac{z^{2}}{8}+\frac{z^{2}}{4}+\frac{z^{2}}{2}=\frac{7}{8} z^{2}=\frac{7}{2} & z^{2}=4 \\
z=2 & x=\frac{1}{2} z=1 & y=z=2 & f=1 \cdot 2^{2} \cdot 2^{4}=2^{6}=64
\end{array}
$$

Plug into the constraint:

