Name \qquad Section: \qquad
MATH 221 Exam 2, Version B
Fall 2023
502,503
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1. Consider the function $z=f(x, y)=x y^{3}$. Its x-trace with $y=3$ is the intersection of the graph of $z=f(x, y)$ and the plane $y=3$. Find the slope of this x-trace at $x=2$.
a. 8
b. 24
c. 27
d. 54
e. 96
2. Consider the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$.

Which of the following paths of approach gives a different value of the limit?
a. $y=2 x \quad \& \quad x \rightarrow 0$
b. $y=x^{2}+x^{3} \quad \& \quad x \rightarrow 0$
c. $y=x^{2}+x \quad \& \quad x \rightarrow 0$
d. $y=x^{3} \quad \& \quad x \rightarrow 0$
e. They are all equal.

Hint: Don't bother multiplying out any quadratic.
3. Find the plane tangent to the graph of the function $z=x \cos y$ at the point $\left(\sqrt{2}, \frac{\pi}{4}\right)$. Its z-intercept is
a. $c=\frac{\pi}{4}$
b. $c=-\frac{\pi}{4}$
c. $c=\frac{\pi}{4} \sqrt{2}$
d. $c=-\frac{\pi}{2} \sqrt{2}$
e. $c=1+\sqrt{2}-\frac{\pi}{4}$
4. If the focal length of a lens is f and an object is placed a distance u from the lens, then the image of the object will appear to be a distance v from the lens related by

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v} \quad \text { or } \quad v=\frac{f u}{u-f}
$$

Consider a lens with an adjustable focal length.
Currently, $f=2 \mathrm{~cm}, u=8 \mathrm{~cm}$ and $v=\frac{8}{3} \mathrm{~cm}$.
If f and u increase by $\Delta f=0.9 \mathrm{~cm}$ and

$\Delta u=1.8 \mathrm{~cm}$, use the linear approximation
to approximate how much v changes.
a. $\Delta v \approx 1 \mathrm{~cm}$
b. $\Delta v \approx 1.2 \mathrm{~cm}$
c. $\Delta v \approx 1.4 \mathrm{~cm}$
d. $\Delta v \approx 1.6 \mathrm{~cm}$
e. $\Delta v \approx 1.8 \mathrm{~cm}$
5. Let $f(x, y)=x \cos (x y)$. Compute $f_{x y}\left(2, \frac{\pi}{8}\right)$.
a. $2 \sqrt{2}+\frac{1}{4} \sqrt{2} \pi$
b. $2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi$
c. $-2 \sqrt{2}+\frac{1}{4} \sqrt{2} \pi$
d. $-2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi$
6. The volume of a cone is $V=\frac{1}{12} \pi D^{2} H$ where
D is the diameter and H is the height.
Currently, $D=4 \mathrm{~cm}, \quad H=3 \mathrm{~cm}$ and $V=4 \pi \mathrm{~cm}$.
If V and H are increasing at $\frac{d V}{d t}=0.6 \pi \frac{\mathrm{~cm}}{\mathrm{sec}}$
and $\frac{d H}{d t}=0.3 \frac{\mathrm{~cm}}{\mathrm{sec}}$, at what rate is D changing?

a. $\frac{d D}{d t}=0.1 \frac{\mathrm{~cm}}{\mathrm{sec}}$
b. $\frac{d D}{d t}=0.25 \frac{\mathrm{~cm}}{\mathrm{sec}}$
c. $\frac{d D}{d t}=0.5 \frac{\mathrm{~cm}}{\mathrm{sec}}$
d. $\frac{d D}{d t}=0.6 \frac{\mathrm{~cm}}{\mathrm{sec}}$
e. $\frac{d D}{d t}=0.75 \frac{\mathrm{~cm}}{\mathrm{sec}}$
7. Find the equation of the plane tangent to $x^{2} y^{2} e^{2 z-4}=1$ at the point $P=(1,1,2)$. It's z-intercept is:
a. $c=0$
b. $c=1$
c. $c=2$
d. $c=3$
e. $c=4$
8. The point $(x, y)=(1,2)$ is a critical point of the function $f(x, y)=2 x^{3} y^{2}+x^{2} y^{3}-5 x^{2} y^{2}$. Use the Second Derivative Test to classify this critical point.
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test Fails
9. (36 pts) Obi-Two is flying the Centurion Eagle through the Force, Desperation and Luck fields. The Force, F, depends on the Desperation, D, and Luck, L, by the relation: $F=2 D^{2} L$. Currently, the Desperation and Luck and their gradients are:

$$
\begin{aligned}
D & =2 & \vec{\nabla} D & =\langle 1,0,3\rangle \\
L & =3 & \vec{\nabla} L & =\langle 2,1,0\rangle
\end{aligned}
$$

a. (23 pts) Obi-Two's current velocity is $\vec{v}=\langle 3,2,1\rangle$. Find the rate that Obi-Two sees the Force changing.
b. (13 pts) In what direction should Obi-Two travel to increase the Force as fast as possible? HINT: Compute each (x, y, z) partial derivative separately.
10. (20 pts) Find the volume of the largest rectangular solid with its 8 vertices on the ellipsoid:

$$
\frac{x^{2}}{8}+\frac{y^{2}}{18}+\frac{z^{2}}{2}=6
$$

