Name
Section: \qquad
MATH 221
Exam 2, Version B
Fall 2023
502,503
Solutions
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1. Consider the function $z=f(x, y)=x y^{3}$. Its x-trace with $y=3$ is the intersection of the graph of $z=f(x, y)$ and the plane $y=3$. Find the slope of this x-trace at $x=2$.
a. 8
b. 24
c. 27 Correct
d. 54
e. 96

Solution: The slope of the x-trace is the x-partial derivative Here it is $f_{x}(x, y)=y^{3}$. So the slope of the x-trace with $y=3$ at $x=2$ is $f_{x}(2,3)=3^{3}=27$.
2. Consider the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$.

Which of the following paths of approach gives a different value of the limit?
a. $y=2 x \quad \& \quad x \rightarrow 0$
b. $y=x^{2}+x^{3} \quad \& \quad x \rightarrow 0 \quad$ Correct
c. $y=x^{2}+x \quad \& \quad x \rightarrow 0$
d. $y=x^{3} \quad \& \quad x \rightarrow 0$
e. They are all equal.

Hint: Don't bother multiplying out any quadratic.

Solution:

$$
\begin{aligned}
& \lim _{\substack{y=2 x \\
x \rightarrow 0}} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2} 2 x}{x^{4}+4 x^{2}}=\lim _{x \rightarrow 0} \frac{2 x}{x^{2}+4}=0 \\
& \lim _{\substack{y=x^{2}+x^{3} \\
x \rightarrow 0}} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}\left(x^{2}+x^{3}\right)}{x^{4}+\left(x^{2}+x^{3}\right)^{2}}=\lim _{x \rightarrow 0} \frac{(1+x)}{1+(1+x)^{2}}=\frac{1}{2} \\
& \lim _{\substack{y=x^{2}+x}} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}\left(x^{2}+x\right)}{x^{4}+\left(x^{2}+x\right)^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}+x}{x^{2}+(x+1)^{2}}=0 \\
& \lim _{\substack{y=x^{3} \\
x \rightarrow 0}} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}\left(x^{3}\right)}{x^{4}+\left(x^{3}\right)^{2}}=\lim _{x \rightarrow 0} \frac{x}{1+x}=0
\end{aligned}
$$

3. Find the plane tangent to the graph of the function $z=x \cos y$ at the point $\left(\sqrt{2}, \frac{\pi}{4}\right)$. Its z-intercept is
a. $c=\frac{\pi}{4} \quad$ Correct
b. $c=-\frac{\pi}{4}$
c. $c=\frac{\pi}{4} \sqrt{2}$
d. $c=-\frac{\pi}{2} \sqrt{2}$
e. $c=1+\sqrt{2}-\frac{\pi}{4}$

Solution: $f(x, y)=x \cos y \quad f\left(\sqrt{2}, \frac{\pi}{4}\right)=\sqrt{2} \frac{1}{\sqrt{2}}=1$

$$
\begin{aligned}
& f_{x}(x, y)=\cos y \quad f_{x}\left(\sqrt{2}, \frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \quad f_{y}(x, y)=-x \sin y \quad f_{y}\left(\sqrt{2}, \frac{\pi}{4}\right)=-\sqrt{2} \frac{1}{\sqrt{2}}=-1 \\
& z=f\left(\sqrt{2}, \frac{\pi}{4}\right)+f_{x}\left(\sqrt{2}, \frac{\pi}{4}\right)(x-\sqrt{2})+f_{y}\left(\sqrt{2}, \frac{\pi}{4}\right)\left(y-\frac{\pi}{4}\right)=1+\frac{1}{\sqrt{2}}(x-\sqrt{2})-1\left(y-\frac{\pi}{4}\right) \\
& =\frac{1}{\sqrt{2}} x-y+1-1+\frac{\pi}{4}=12 x-16 y+\frac{\pi}{4} \quad c=\frac{\pi}{4}
\end{aligned}
$$

4. If the focal length of a lens is f and an object is placed a distance u from the lens, then the image of the object will appear to be a distance v from the lens related by

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v} \quad \text { or } \quad v=\frac{f u}{u-f}
$$

Consider a lens with an adjustable focal length.
Currently, $f=2 \mathrm{~cm}, u=8 \mathrm{~cm}$ and $v=\frac{8}{3} \mathrm{~cm}$.

If f and u increase by $\Delta f=0.9 \mathrm{~cm}$ and
$\Delta u=1.8 \mathrm{~cm}$, use the linear approximation
to approximate how much v changes.
a. $\Delta v \approx 1 \mathrm{~cm}$
b. $\Delta v \approx 1.2 \mathrm{~cm}$
c. $\Delta v \approx 1.4 \mathrm{~cm}$ Correct
d. $\Delta v \approx 1.6 \mathrm{~cm}$
e. $\Delta v \approx 1.8 \mathrm{~cm}$

Solution: The derivatives of v are $\frac{\partial v}{\partial f}=\frac{(u-f) u-f u(-1)}{(u-f)^{2}}=\frac{u^{2}}{(u-f)^{2}}=\frac{8^{2}}{6^{2}}=\frac{16}{9} \quad \frac{\partial v}{\partial u}=\frac{(u-f) f-f u(1)}{(u-f)^{2}}=\frac{-2^{2}}{6^{2}}=\frac{-1}{9}$
The change in v is approximately its differential:

$$
\Delta v \approx d v=\frac{\partial v}{\partial f} d f+\frac{\partial v}{\partial u} d u=\frac{16}{9} 0.9+\frac{-1}{9} 1.8=1.4 \mathrm{~cm}
$$

5. Let $f(x, y)=x \cos (x y)$. Compute $f_{x y}\left(2, \frac{\pi}{8}\right)$.
a. $2 \sqrt{2}+\frac{1}{4} \sqrt{2} \pi$
b. $2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi$
c. $-2 \sqrt{2}+\frac{1}{4} \sqrt{2} \pi$
d. $-2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi$

Correct
Solution: It's easier to compute $f_{y x}$. $\quad f_{y}=-x^{2} \sin (x y) \quad f_{y x}=-2 x \sin (x y)-x^{2} y \cos (x y)$ $f_{y x}\left(2, \frac{\pi}{8}\right)=-4 \sin \left(2 \cdot \frac{\pi}{8}\right)-4 \frac{\pi}{8} \cos \left(2 \cdot \frac{\pi}{8}\right)=-2 \sqrt{2}-\frac{1}{4} \sqrt{2} \pi$
6. The volume of a cone is $V=\frac{1}{12} \pi D^{2} H$ where
D is the diameter and H is the height.
Currently, $D=4 \mathrm{~cm}, H=3 \mathrm{~cm}$ and $V=4 \pi \mathrm{~cm}$.
If V and H are increasing at $\frac{d V}{d t}=0.6 \pi \frac{\mathrm{~cm}}{\mathrm{sec}}$ and $\frac{d H}{d t}=0.3 \frac{\mathrm{~cm}}{\mathrm{sec}}$, at what rate is D changing?

a. $\frac{d D}{d t}=0.1 \frac{\mathrm{~cm}}{\mathrm{sec}} \quad$ Correct
b. $\frac{d D}{d t}=0.25 \frac{\mathrm{~cm}}{\mathrm{sec}}$
c. $\frac{d D}{d t}=0.5 \frac{\mathrm{~cm}}{\mathrm{sec}}$
d. $\frac{d D}{d t}=0.6 \frac{\mathrm{~cm}}{\mathrm{sec}}$
e. $\frac{d D}{d t}=0.75 \frac{\mathrm{~cm}}{\mathrm{sec}}$

Solution: We take the time derivative of the volume:

$$
\frac{d V}{d t}=\frac{\partial V}{\partial D} \frac{d D}{d t}+\frac{\partial V}{\partial H} \frac{d H}{d t}=\frac{1}{6} \pi D H \frac{d D}{d t}+\frac{1}{12} \pi D^{2} \frac{d H}{d t}
$$

plug in numbers $0.6 \pi=2 \pi \frac{d D}{d t}+\frac{4}{3} \pi 0.3$ and solve for $\frac{d D}{d t}=\frac{1}{2}(0.6-0.4)=0.1$
7. Find the equation of the plane tangent to $x^{2} y^{2} e^{2 z-4}=1$ at the point $P=(1,1,2)$. It's z-intercept is:
a. $c=0$
b. $c=1$
c. $c=2$
d. $c=3$
e. $c=4 \quad$ Correct

Solution: Let $F(x, y, x)=x^{2} y e^{z^{2}-4}$. Then $\vec{\nabla} F=\left\langle 2 x y^{2} e^{2 z-4}, 2 x^{2} y e^{2 z-4}, x^{2} y^{2} 2 e^{2 z-4}\right\rangle$ and $\vec{N}=\left.\vec{\nabla} F\right|_{P}=\langle 2,2,2\rangle$. So the plane is $\vec{N} \cdot X=\vec{N} \cdot P$ or $2 x+2 y+2 z=2 \cdot 1+2 \cdot 1+2 \cdot 2=8$ or $x+y+z=4$
The z-intercept occurs when $x=y=0$. So the z-intercept is $c=4$.
8. The point $(x, y)=(1,2)$ is a critical point of the function $f(x, y)=2 x^{3} y^{2}+x^{2} y^{3}-5 x^{2} y^{2}$. Use the Second Derivative Test to classify this critical point.
a. Local Minimum Correct
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test Fails

Solution: $f_{x}=6 x^{2} y^{2}+2 x y^{3}-10 x y^{2} \quad f_{y}=4 x^{3} y+3 x^{2} y^{2}-10 x^{2} y$
We check: $f_{x}(1,2)=24+16-40=0 \quad f_{y}(1,2)=8+12-20=0$, Yes, it's a critical point. $f_{x x}=12 x y^{2}+2 y^{3}-10 y^{2} \quad f_{y y}=4 x^{3}+6 x^{2} y-10 x^{2} \quad f_{x y}=12 x^{2} y+6 x y^{2}-20 x y$ $f_{x x}(1,2)=48+16-40=24>0 \quad f_{y y}(1,2)=4+12-10=6>0 \quad f_{x y}(1,2)=24+24-40=8$ $D=f_{x x} f_{y y}-f_{x y}{ }^{2}=24 \cdot 6-8^{2}=80>0 \quad$ Local Minimum
9. (36 pts) Obi-Two is flying the Centurion Eagle through the Force, Desperation and Luck fields. The Force, F, depends on the Desperation, D, and Luck, L, by the relation: $F=2 D^{2} L$. Currently, the Desperation and Luck and their gradients are:

$$
\begin{aligned}
D & =2 & \vec{\nabla} D & =\langle 1,0,3\rangle \\
L & =3 & \vec{\nabla} L & =\langle 2,1,0\rangle
\end{aligned}
$$

a. (23 pts) Obi-Two's current velocity is $\vec{v}=\langle 3,2,1\rangle$. Find the rate that Obi-Two sees the Force changing.

Solution: The partial derivatives of \vec{F} are:

$$
\frac{\partial F}{\partial D}=4 D L=4 \cdot 2 \cdot 3=24 \quad \frac{\partial F}{\partial L}=2 D^{2}=2 \cdot 2^{2}=8
$$

The derivatives of x, y, z, D and L are components of the velocity and the gradients. So by the Chain Rule, the derivative of F is:

$$
\begin{aligned}
\frac{d F}{d t} & =\frac{\partial F}{\partial D}\left(\frac{\partial D}{\partial x} \frac{d x}{d t}+\frac{\partial D}{\partial y} \frac{d y}{d t}+\frac{\partial D}{\partial z} \frac{d z}{d t}\right)+\frac{\partial F}{\partial L}\left(\frac{\partial L}{\partial x} \frac{d x}{d t}+\frac{\partial L}{\partial y} \frac{d y}{d t}+\frac{\partial L}{\partial z} \frac{d z}{d t}\right) \\
& =24(1 \cdot 3+3 \cdot 1)+8(2 \cdot 3+1 \cdot 2)=144+64=208
\end{aligned}
$$

b. (13 pts) In what direction should Obi-Two travel to increase the Force as fast as possible? HINT: Compute each (x, y, z) partial derivative separately.

Solution: The partial derivatives of \vec{F} are:

$$
\frac{\partial F}{\partial D}=4 D L=4 \cdot 2 \cdot 3=24 \quad \frac{\partial F}{\partial L}=2 D^{2}=2 \cdot 2^{2}=8
$$

The components of the gradient are the (x, y, z) partial derivatives of \vec{F} :

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=\frac{\partial F}{\partial D} \frac{\partial D}{\partial x}+\frac{\partial F}{\partial L} \frac{\partial L}{\partial x}=24 \cdot 1+8 \cdot 2=40 \\
& \frac{\partial F}{\partial y}=\frac{\partial F}{\partial D} \frac{\partial D}{\partial y}+\frac{\partial F}{\partial L} \frac{\partial L}{\partial y}=24 \cdot 0+8 \cdot 1=8 \\
& \frac{\partial F}{\partial z}=\frac{\partial F}{\partial D} \frac{\partial D}{\partial z}+\frac{\partial F}{\partial L} \frac{\partial L}{\partial z}=24 \cdot 3+8 \cdot 0=72
\end{aligned}
$$

The Force increases fastest in the direction $\vec{\nabla} F=\langle 40,8,72\rangle$.
Alternatively:

$$
\vec{\nabla} F=\frac{\partial F}{\partial D} \vec{\nabla} D+\frac{\partial F}{\partial L} \vec{\nabla} L
$$

10. (20 pts) Find the volume of the largest rectangular solid with its 8 vertices on the ellipsoid:

$$
\frac{x^{2}}{8}+\frac{y^{2}}{18}+\frac{z^{2}}{2}=6
$$

Solution: Let (x, y, z) be the vertex in the first octant.
The length is $2 x$. The width is $2 y$. The height is $2 z$. We maximize the volume $V=8 x y z$.
The constraint is $g=\frac{x^{2}}{8}+\frac{y^{2}}{18}+\frac{z^{2}}{2}=6$. Their gradients are:
$\vec{\nabla} V=\langle 8 y z, 8 x z, 8 x y\rangle \quad \vec{\nabla} g=\left\langle\frac{x}{4}, \frac{y}{9}, z\right\rangle \quad$ The Lagrange equations are
$8 y z=\lambda \frac{x}{4} \quad 8 x z=\lambda \frac{y}{9} \quad 8 x y=\lambda z$
Multiply the first by x, the second by y and the third by z and equate:
$\begin{array}{lcc}8 x y z=\lambda \frac{x^{2}}{4}=\lambda \frac{y^{2}}{9}=\lambda z^{2} & \text { So } x^{2}=4 z^{2} & y^{2}=9 z^{2} \quad \text { Plug into the constraint: } \\ \frac{x^{2}}{8}+\frac{y^{2}}{18}+\frac{z^{2}}{2}=\frac{z^{2}}{2}+\frac{z^{2}}{2}+\frac{z^{2}}{2}=\frac{3 z^{2}}{2}=6 & z^{2}=4 \\ z=2 & x=2 z=4 & y=3 z=6\end{array} \quad V=8 \cdot 4 \cdot 6 \cdot 2=384$

