Name		Section:				
MATH 221	Exam 2, Version C	Fall 2023	1-8	/48	10	/20
502,503		P. Yasskin	9	/36	Total	/104

Multiple Choice: (6 points each. No part credit.)

- **1**. Consider the function $z = f(x,y) = xy^4$. Its *y*-trace at x = 3 is the intersection of the graph of z = f(x,y) and the plane x = 3. Find the slope of this *y*-trace at y = 2.
 - **a**. 8
 - **b**. 24
 - **c**. 27
 - **d**. 54
 - **e**. 96

2. Consider the limit $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$.

Which of the following paths of approach gives a different value of the limit?

- **a**. $y = x^2$ **&** $x \to 0$
- **b.** $y = x^3 + x^2$ & $x \to 0$

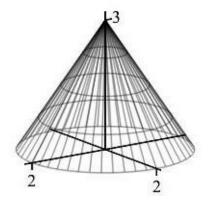
c.
$$y = x^3 + x^4$$
 & $x \to 0$

- **d**. $y = x^4$ **&** $x \to 0$
- e. They are all equal.

Hint: Don't bother multiplying out any quadratic.

- **3**. Find the plane tangent to the graph of the function $z = \frac{x^3}{v^2}$ at the point (2,1).
 - Its *z*-intercept is
 - **a**. *c* = −32
 - **b**. c = -8
 - **c**. c = 0
 - **d**. *c* = 8
 - **e**. *c* = 32

4. The volume of a cone is $V = \frac{1}{12}\pi D^2 H$ where *D* is the diameter and *H* is the height. Currently, D = 4 cm, H = 3 cm and $V = 4\pi$ cm. If *V* and *H* increase by $\Delta V = 0.6\pi$ cm and $\Delta H = 0.3$ cm, use the linear approximation to approximate how much *D* changes.

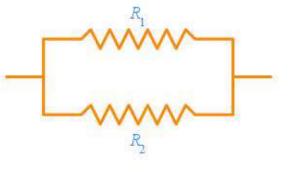


- **a**. $\Delta D \approx 0.1 \text{ cm}$
- **b**. $\Delta D \approx 0.2 \text{ cm}$
- **c**. $\Delta D \approx 0.3$ cm
- **d**. $\Delta D \approx 0.4$ cm
- **e**. $\Delta D \approx 0.6$ cm

- **5**. Let $f(x,y) = xe^{xy}$. Compute $f_{xy}(2, \ln 2)$.
 - **a**. $16 + 16 \ln 2$
 - **b**. $4 + 4 \ln 2$
 - **c**. $4 4 \ln 2$
 - **d**. $2 + 2 \ln 2$
 - **e**. $2 2 \ln 2$

6. If two resistors, with resistances R_1 and R_2 are connected in parallel, then the total resistance R satisfies:

 $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \quad \text{or} \quad R = \frac{R_1 R_2}{R_1 + R_2}$ Currently $R_1 = 200$ ohms, $R_2 = 400$ ohms and $R = \frac{400}{3}$ ohms. If R_1 and R_2 are increasing at $\frac{dR_1}{dt} = 1.8 \frac{\text{ohms}}{\text{min}}$ and $\frac{dR_2}{dt} = 0.9 \frac{\text{ohms}}{\text{min}}$, at what rate is R changing?



a. $\frac{dR}{dt} = 0.1 \frac{\text{ohms}}{\text{min}}$ b. $\frac{dR}{dt} = 0.3 \frac{\text{ohms}}{\text{min}}$ c. $\frac{dR}{dt} = 0.6 \frac{\text{ohms}}{\text{min}}$ d. $\frac{dR}{dt} = 0.9 \frac{\text{ohms}}{\text{min}}$ e. $\frac{dR}{dt} = 1.8 \frac{\text{ohms}}{\text{min}}$

- 7. Find the equation of the plane tangent to $x^2 z \sin y = 2\sqrt{2}$ at the point $P = \left(2, \frac{\pi}{4}, 1\right)$. It's *z*-intercept is:
 - **a.** $c = 3 + \frac{\pi}{4}$ **b.** $c = 1 + \frac{\pi}{4}$ **c.** $c = 3 + \frac{\pi}{2}$ **d.** $c = 2 + \frac{\pi}{2}$ **e.** $c = 1 + \frac{\pi}{4}$

- **8**. The point (x,y) = (2,1) is a critical point of the function $f(x,y) = 12xy x^3 8y^3$. Use the Second Derivative Test to classify this critical point.
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails

9. (36 pts) Obi-Two is flying the Centurion Eagle through the Force, Desperation and Luck fields. The Force, *F*, depends on the Desperation, *D*, and Luck, *L*, by the relation: $F = 3DL^2$. Currently, the Desperation and Luck and their gradients are:

$$D = 3 \qquad \vec{\nabla}D = \langle 3, 0, 1 \rangle$$
$$L = 2 \qquad \vec{\nabla}L = \langle 1, 2, 0 \rangle$$

a. (23 pts) Obi-Two's current velocity is $\vec{v} = \langle 1, 2, 3 \rangle$. Find the rate that Obi-Two sees the Force changing.

b. (13 pts) In what direction should Obi-Two travel to increase the Force as fast as possible? HINT: Compute each (x,y,z) partial derivative separately. **10**. (20 pts) Find the point on the surface $z = \frac{1}{4x^2y^4}$ in the 1st octant which is closest to the origin. HINT: Write the constraint as $g = x^2y^4z = \frac{1}{4}$.

