Name \qquad
MATH 221
502,503
Exam 2, Version C
Fall 2023
Solutions
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1. Consider the function $z=f(x, y)=x y^{4}$. Its y-trace at $x=3$ is the intersection of the graph of $z=f(x, y)$ and the plane $x=3$. Find the slope of this y-trace at $y=2$.
a. 8
b. 24
c. 27
d. 54
e. 96

Correct
Solution: The slope of the y-trace is the y-partial derivative Here it is $f_{y}(x, y)=4 x y^{3}$. So the slope of the y-trace with $x=3$ at $y=2$ is $f_{y}(3,2)=4 \cdot 3 \cdot 2^{3}=96$.
2. Consider the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}$.

Which of the following paths of approach gives a different value of the limit?
a. $y=x^{2} \quad \& \quad x \rightarrow 0$
b. $y=x^{3}+x^{2} \quad \& \quad x \rightarrow 0$
c. $y=x^{3}+x^{4} \quad \& \quad x \rightarrow 0 \quad$ Correct
d. $y=x^{4} \quad \& \quad x \rightarrow 0$
e. They are all equal.

Hint: Don't bother multiplying out any quadratic.

Solution:

$\lim _{\substack{y=x^{2} \\ x \rightarrow 0}} \frac{x^{3} y}{x^{6}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{3} x^{2}}{x^{6}+x^{4}}=\lim _{x \rightarrow 0} \frac{x}{x^{2}+1}=0$
$\lim _{\substack{y=x^{3}+x^{2} \\ x \rightarrow 0}} \frac{x^{3} y}{x^{6}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{3}\left(x^{3}+x^{2}\right)}{x^{6}+\left(x^{3}+x^{2}\right)^{2}}=\lim _{x \rightarrow 0} \frac{\left(x^{2}+x\right)}{x^{2}+(x+1)^{2}}=0$
$\lim _{\substack{y=x^{3}+x^{4} \\ x \rightarrow 0}} \frac{x^{3} y}{x^{6}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{3}\left(x^{3}+x^{4}\right)}{x^{6}+\left(x^{3}+x^{4}\right)^{2}}=\lim _{x \rightarrow 0} \frac{1+x}{1+(1+x)^{2}}=\frac{1}{2}$
$\lim _{\substack{y=x^{4} \\ x \rightarrow 0}} \frac{x^{3} y}{x^{6}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{3} x^{4}}{x^{6}+x^{8}}=\lim _{x \rightarrow 0} \frac{x}{1+x^{2}}=0$
3. Find the plane tangent to the graph of the function $z=\frac{x^{3}}{y^{2}}$ at the point $(2,1)$. Its z-intercept is
a. $c=-32$
b. $c=-8$
c. $c=0 \quad$ Correct
d. $c=8$
e. $c=32$

Solution: $f(x, y)=\frac{x^{3}}{y^{2}} \quad f(2,1)=8$

$$
\begin{gathered}
f_{x}(x, y)=\frac{3 x^{2}}{y^{2}} \quad f_{x}(2,1)=12 \quad f_{y}(x, y)=-\frac{2 x^{3}}{y^{3}} \quad f_{y}(2,1)=-16 \\
z=f(2,1)+f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)=8+12(x-2)-16(y-1) \\
=12 x-16 y+8-24+16=12 x-16 y \quad c=0
\end{gathered}
$$

4. The volume of a cone is $V=\frac{1}{12} \pi D^{2} H$ where
D is the diameter and H is the height.
Currently, $D=4 \mathrm{~cm}, H=3 \mathrm{~cm}$ and $V=4 \pi \mathrm{~cm}$.
If V and H increase by $\Delta V=0.6 \pi \mathrm{~cm}$ and
$\Delta H=0.3 \mathrm{~cm}$, use the linear approximation
to approximate how much D changes.

a. $\Delta D \approx 0.1 \mathrm{~cm}$

Correct
b. $\Delta D \approx 0.2 \mathrm{~cm}$
c. $\Delta D \approx 0.3 \mathrm{~cm}$
d. $\Delta D \approx 0.4 \mathrm{~cm}$
e. $\Delta D \approx 0.6 \mathrm{~cm}$

Solution: The change in V is approximately its differential:

$$
\Delta V \approx d V=\frac{\partial V}{\partial D} d D+\frac{\partial V}{\partial H} d H=\frac{1}{6} \pi D H d D+\frac{1}{12} \pi D^{2} d H
$$

We plug in numbers and solve for $\Delta D=d D$:
$0.6 \pi=\frac{1}{6} \pi 4 \cdot 3 \cdot \Delta D+\frac{1}{12} \pi 16 \cdot 0.3=2 \pi \Delta D+.4 \pi$
$0.2=2 \Delta D$
$\Delta D=0.1 \mathrm{~cm}$
5. Let $f(x, y)=x e^{x y}$. Compute $f_{x y}(2, \ln 2)$.
a. $16+16 \ln 2$ Correct
b. $4+4 \ln 2$
c. $4-4 \ln 2$
d. $2+2 \ln 2$
e. $2-2 \ln 2$

Solution: It's easier to compute $f_{y x}$. $\quad f_{y}=x^{2} e^{x y} \quad f_{y x}=2 x e^{x y}+x^{2} y e^{x y}$
$f_{y x}(2, \ln 2)=4 e^{2 \ln 2}+4 \ln 2 e^{2 \ln 2}=4 \cdot 4+4 \ln 2 \cdot 4=16+16 \ln 2$
6. If two resistors, with resistances R_{1} and R_{2} are connected in parallel, then the total resistance R satisfies:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \text { or } \quad R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Currently $R_{1}=200$ ohms, $R_{2}=400$ ohms and $R=\frac{400}{3}$ ohms. If R_{1} and R_{2} are increasing at $\frac{d R_{1}}{d t}=1.8 \frac{\mathrm{ohms}}{\min }$ and $\frac{d R_{2}}{d t}=0.9 \frac{\mathrm{ohms}}{\mathrm{min}}$,
at what rate is R changing?
a. $\frac{d R}{d t}=0.1 \frac{\mathrm{ohms}}{\mathrm{min}}$
b. $\frac{d R}{d t}=0.3 \frac{\mathrm{ohms}}{\mathrm{min}}$
c. $\frac{d R}{d t}=0.6 \frac{\mathrm{ohms}}{\mathrm{min}}$
d. $\frac{d R}{d t}=0.9 \frac{\text { ohms }}{\mathrm{min}} \quad$ Correct
e. $\frac{d R}{d t}=1.8 \frac{\mathrm{ohms}}{\mathrm{min}}$

Solution: We take the time derivative of the relation:

$$
-\frac{1}{R^{2}} \frac{d R}{d t}=-\frac{1}{R_{1}{ }^{2}} \frac{d R_{1}}{d t}-\frac{1}{R_{2}{ }^{2}} \frac{d R_{2}}{d t}
$$

and solve for $\frac{d R}{d t}$ and plug in numbers:

$$
\begin{aligned}
\frac{d R}{d t} & =\frac{R^{2}}{R_{1}{ }^{2}} \frac{d R_{1}}{d t}+\frac{R^{2}}{R_{2}{ }^{2}} \frac{d R_{2}}{d t}=\left(\frac{400}{3}\right)^{2}\left(\frac{1}{200}\right)^{2} 1.8+\left(\frac{400}{3}\right)^{2}\left(\frac{1}{400}\right) 0.9 \\
& =\left(\frac{2}{3}\right)^{2} 1.8+\left(\frac{1}{3}\right)^{2} 0.9=0.9 \frac{\text { ohms }}{\mathrm{min}}
\end{aligned}
$$

7. Find the equation of the plane tangent to $x^{2} z \sin y=2 \sqrt{2}$ at the point $P=\left(2, \frac{\pi}{4}, 1\right)$. It's z-intercept is:
a. $c=3+\frac{\pi}{4} \quad$ Correct
b. $c=1+\frac{\pi}{4}$
c. $c=3+\frac{\pi}{2}$
d. $c=2+\frac{\pi}{2}$
e. $c=1+\frac{\pi}{4}$

Solution: Let $F(x, y, x)=x^{2} z \sin y$. Then $\vec{\nabla} F=\left\langle 2 x z \sin y, x^{2} z \cos y, x^{2} \sin y\right\rangle$ and $\vec{N}=\left.\vec{\nabla} F\right|_{P}=\left\langle\frac{4}{\sqrt{2}}, \frac{4}{\sqrt{2}}, \frac{4}{\sqrt{2}}\right\rangle$. So the plane is $\vec{N} \cdot X=\vec{N} \cdot P$ or
$\frac{4}{\sqrt{2}} x+\frac{4}{\sqrt{2}} y+\frac{4}{\sqrt{2}} z=\frac{4}{\sqrt{2}} 2+\frac{4}{\sqrt{2}} \frac{\pi}{4}+\frac{4}{\sqrt{2}}$ or $x+y+z=3+\frac{\pi}{4}$
The z-intercept occurs when $x=y=0$. So the z-intercept is $c=3+\frac{\pi}{4}$.
8. The point $(x, y)=(2,1)$ is a critical point of the function $f(x, y)=12 x y-x^{3}-8 y^{3}$. Use the Second Derivative Test to classify this critical point.
a. Local Minimum
b. Local Maximum Correct
c. Inflection Point
d. Saddle Point
e. Test Fails

Solution: $f_{x}=12 y-3 x^{2} \quad f_{y}=12 x-24 y^{2}$
We check: $f_{x}(2,1)=24-24=0 \quad f_{y}(2,1)=24-24=0$, Yes, it's a critical point.
$f_{x x}=-6 x \quad f_{y y}=-48 y \quad f_{x y}=12$
$f_{x x}(2,1)=-12<0 \quad f_{y y}(2,1)=-48<0 \quad f_{x y}(2,1)=12$
$D=f_{x x} f_{y y}-f_{x y}{ }^{2}=(-12)(-48)-12^{2}>0 \quad$ Local Maximum
9. (36 pts) Obi-Two is flying the Centurion Eagle through the Force, Desperation and Luck fields. The Force, F, depends on the Desperation, D, and Luck, L, by the relation: $F=3 D L^{2}$. Currently, the Desperation and Luck and their gradients are:

$$
\begin{aligned}
D & =3 & \vec{\nabla} D & =\langle 3,0,1\rangle \\
L & =2 & \vec{\nabla} L & =\langle 1,2,0\rangle
\end{aligned}
$$

a. (23 pts) Obi-Two's current velocity is $\vec{v}=\langle 1,2,3\rangle$. Find the rate that Obi-Two sees the Force changing.

Solution: The partial derivatives of \vec{F} are:

$$
\frac{\partial F}{\partial D}=3 L^{2}=3 \cdot 2^{2}=12 \quad \frac{\partial F}{\partial L}=6 D L=6 \cdot 3 \cdot 2=36
$$

The derivatives of x, y, z, D and L are components of the velocity and the gradients. So by the Chain Rule, the derivative of F is:

$$
\begin{aligned}
\frac{d F}{d t} & =\frac{\partial F}{\partial D}\left(\frac{\partial D}{\partial x} \frac{d x}{d t}+\frac{\partial D}{\partial y} \frac{d y}{d t}+\frac{\partial D}{\partial z} \frac{d z}{d t}\right)+\frac{\partial F}{\partial L}\left(\frac{\partial L}{\partial x} \frac{d x}{d t}+\frac{\partial L}{\partial y} \frac{d y}{d t}+\frac{\partial L}{\partial z} \frac{d z}{d t}\right) \\
& =12(3 \cdot 1+1 \cdot 3)+36(1 \cdot 1+2 \cdot 2)=72+180=252
\end{aligned}
$$

b. (13 pts) In what direction should Obi-Two travel to increase the Force as fast as possible? HINT: Compute each (x, y, z) partial derivative separately.

Solution: The partial derivatives of \vec{F} are:

$$
\frac{\partial F}{\partial D}=3 L^{2}=3 \cdot 2^{2}=12 \quad \frac{\partial F}{\partial L}=6 D L=6 \cdot 3 \cdot 2=36
$$

The components of the gradient are the (x, y, z) partial derivatives of \vec{F} :

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=\frac{\partial F}{\partial D} \frac{\partial D}{\partial x}+\frac{\partial F}{\partial L} \frac{\partial L}{\partial x}=12 \cdot 3+36 \cdot 1=72 \\
& \frac{\partial F}{\partial y}=\frac{\partial F}{\partial D} \frac{\partial D}{\partial y}+\frac{\partial F}{\partial L} \frac{\partial L}{\partial y}=12 \cdot 0+36 \cdot 2=72 \\
& \frac{\partial F}{\partial z}=\frac{\partial F}{\partial D} \frac{\partial D}{\partial z}+\frac{\partial F}{\partial L} \frac{\partial L}{\partial z}=12 \cdot 1+36 \cdot 0=12
\end{aligned}
$$

The Force increases fastest in the direction $\vec{\nabla} F=\langle 72,72,12\rangle$.
Alternatively:

$$
\vec{\nabla} F=\frac{\partial F}{\partial D} \vec{\nabla} D+\frac{\partial F}{\partial L} \vec{\nabla} L
$$

10. (20 pts) Find the point on the surface $z=\frac{1}{4 x^{2} y^{4}}$ in the $1^{\text {st }}$ octant which is closest to the origin.
HINT: Write the constraint as $g=x^{2} y^{4} z=\frac{1}{4}$.

Solution: We minimize the square of the distance, $f=D^{2}=x^{2}+y^{2}+z^{2}$.
The constraint is $g=x^{2} y^{4} z=\frac{1}{4}$. The gradients are:
$\vec{\nabla} V=\langle 2 x, 2 y, 2 z\rangle \quad \vec{\nabla} g=\left\langle 2 x y^{4} z, 4 x^{2} y^{3} z, x^{2} y^{4}\right\rangle \quad$ The Lagrange equations are:
$2 x=\lambda 2 x y^{4} z \quad 2 y=\lambda 4 x^{2} y^{3} z \quad 2 z=\lambda x^{2} y^{4}$
Multiply the first by $\frac{x}{2}$, the second by $\frac{y}{4}$ and the third by z and equate:

