Name		Section:				
MATH 221	Exam 2, Version C	Fall 2023	1-8	/48	10	/20
502,503	Solutions	P. Yasskin	9	/36	Total	/104

Multiple Choice: (6 points each. No part credit.)

- **1**. Consider the function $z = f(x, y) = xy^4$. Its *y*-trace at x = 3 is the intersection of the graph of z = f(x, y) and the plane x = 3. Find the slope of this *y*-trace at y = 2.
 - **a**. 8
 - **b**. 24
 - **c**. 27
 - **d**. 54
 - e. 96 Correct

Solution: The slope of the *y*-trace is the *y*-partial derivative Here it is $f_y(x,y) = 4xy^3$. So the slope of the *y*-trace with x = 3 at y = 2 is $f_y(3,2) = 4 \cdot 3 \cdot 2^3 = 96$.

2. Consider the limit $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$.

Which of the following paths of approach gives a different value of the limit?

- **a**. $y = x^2$ & $x \to 0$ **b**. $y = x^3 + x^2$ & $x \to 0$ **c**. $y = x^3 + x^4$ & $x \to 0$ Correct
- **d**. $y = x^4$ **&** $x \to 0$
- e. They are all equal.

Hint: Don't bother multiplying out any quadratic.

Solution:

$$\lim_{\substack{y=x^2\\x\to 0}} \frac{x^3y}{x^6 + y^2} = \lim_{x\to 0} \frac{x^3x^2}{x^6 + x^4} = \lim_{x\to 0} \frac{x}{x^2 + 1} = 0$$
$$\lim_{\substack{y=x^3+x^2\\x\to 0}} \frac{x^3y}{x^6 + y^2} = \lim_{x\to 0} \frac{x^3(x^3 + x^2)}{x^6 + (x^3 + x^2)^2} = \lim_{x\to 0} \frac{(x^2 + x)}{x^2 + (x + 1)^2} = 0$$
$$\lim_{\substack{y=x^3+x^4\\x\to 0}} \frac{x^3y}{x^6 + y^2} = \lim_{x\to 0} \frac{x^3(x^3 + x^4)}{x^6 + (x^3 + x^4)^2} = \lim_{x\to 0} \frac{1 + x}{1 + (1 + x)^2} = \frac{1}{2}$$
$$\lim_{\substack{y=x^4\\x\to 0}} \frac{x^3y}{x^6 + y^2} = \lim_{x\to 0} \frac{x^3x^4}{x^6 + x^8} = \lim_{x\to 0} \frac{x}{1 + x^2} = 0$$

- **3**. Find the plane tangent to the graph of the function $z = \frac{x^3}{v^2}$ at the point (2,1).
 - Its *z*-intercept is
 - **a**. *c* = −32
 - **b**. c = -8
 - **c**. c = 0 Correct
 - **d**. c = 8
 - **e**. *c* = 32

Solution: $f(x,y) = \frac{x^3}{y^2}$ f(2,1) = 8 $f_x(x,y) = \frac{3x^2}{y^2}$ $f_x(2,1) = 12$ $f_y(x,y) = -\frac{2x^3}{y^3}$ $f_y(2,1) = -16$ $z = f(2,1) + f_x(2,1)(x-2) + f_y(2,1)(y-1) = 8 + 12(x-2) - 16(y-1)$ = 12x - 16y + 8 - 24 + 16 = 12x - 16y c = 0

4. The volume of a cone is $V = \frac{1}{12}\pi D^2 H$ where *D* is the diameter and *H* is the height. Currently, D = 4 cm, H = 3 cm and $V = 4\pi$ cm. If *V* and *H* increase by $\Delta V = 0.6\pi$ cm and $\Delta H = 0.3$ cm, use the linear approximation to approximate how much *D* changes.

- **a**. $\Delta D \approx 0.1$ cm Correct
- **b**. $\Delta D \approx 0.2 \text{ cm}$
- **c**. $\Delta D \approx 0.3$ cm
- **d**. $\Delta D \approx 0.4$ cm
- **e**. $\Delta D \approx 0.6$ cm

Solution: The change in V is approximately its differential:

$$\Delta V \approx dV = \frac{\partial V}{\partial D} dD + \frac{\partial V}{\partial H} dH = \frac{1}{6} \pi D H dD + \frac{1}{12} \pi D^2 dH$$

We plug in numbers and solve for $\Delta D = dD$:
 $0.6\pi = \frac{1}{6} \pi 4 \cdot 3 \cdot \Delta D + \frac{1}{12} \pi 16 \cdot 0.3 = 2\pi \Delta D + 4\pi$ $0.2 = 2\Delta D$ $\Delta D = 0.1$ cm

5. Let $f(x,y) = xe^{xy}$. Compute $f_{xy}(2, \ln 2)$.

- **a**. $16 + 16 \ln 2$ Correct
- **b**. $4 + 4 \ln 2$
- **c**. $4 4 \ln 2$
- **d**. $2 + 2 \ln 2$
- **e**. $2 2 \ln 2$

Solution: It's easier to compute f_{yx} . $f_y = x^2 e^{xy}$ $f_{yx} = 2xe^{xy} + x^2ye^{xy}$ $f_{yx}(2, \ln 2) = 4e^{2\ln 2} + 4\ln 2e^{2\ln 2} = 4 \cdot 4 + 4\ln 2 \cdot 4 = 16 + 16\ln 2$

6. If two resistors, with resistances R_1 and R_2 are connected in parallel, then the total resistance R satisfies:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 or $R = \frac{R_1 R_2}{R_1 + R_2}$

Currently $R_1 = 200$ ohms, $R_2 = 400$ ohms and $R = \frac{400}{3}$ ohms. If R_1 and R_2 are increasing at $\frac{dR_1}{dt} = 1.8 \frac{\text{ohms}}{\text{min}}$ and $\frac{dR_2}{dt} = 0.9 \frac{\text{ohms}}{\text{min}}$,

at what rate is *R* changing?

a. $\frac{dR}{dt} = 0.1 \frac{\text{ohms}}{\text{min}}$ **b.** $\frac{dR}{dt} = 0.3 \frac{\text{ohms}}{\text{min}}$ **c.** $\frac{dR}{dt} = 0.6 \frac{\text{ohms}}{\text{min}}$ **d.** $\frac{dR}{dt} = 0.9 \frac{\text{ohms}}{\text{min}}$ Correct **e.** $\frac{dR}{dt} = 1.8 \frac{\text{ohms}}{\text{min}}$

Solution: We take the time derivative of the relation:

$$-\frac{1}{R^2}\frac{dR}{dt} = -\frac{1}{R_1^2}\frac{dR_1}{dt} - \frac{1}{R_2^2}\frac{dR_2}{dt}$$

and solve for $\frac{dR}{dt}$ and plug in numbers: $\frac{dR}{dt} = \frac{R^2}{R_1^2} \frac{dR_1}{dt} + \frac{R^2}{R_2^2} \frac{dR_2}{dt} = \left(\frac{400}{3}\right)^2 \left(\frac{1}{200}\right)^2 1.8 + \left(\frac{400}{3}\right)^2 \left(\frac{1}{400}\right) 0.9$ $= \left(\frac{2}{3}\right)^2 1.8 + \left(\frac{1}{3}\right)^2 0.9 = 0.9 \frac{\text{ohms}}{\text{min}}$

- 7. Find the equation of the plane tangent to $x^2 z \sin y = 2\sqrt{2}$ at the point $P = \left(2, \frac{\pi}{4}, 1\right)$. It's *z*-intercept is:
 - **a.** $c = 3 + \frac{\pi}{4}$ Correct **b.** $c = 1 + \frac{\pi}{4}$ **c.** $c = 3 + \frac{\pi}{2}$ **d.** $c = 2 + \frac{\pi}{2}$ **e.** $c = 1 + \frac{\pi}{4}$

Solution: Let $F(x,y,x) = x^2 z \sin y$. Then $\vec{\nabla}F = \langle 2xz \sin y, x^2 z \cos y, x^2 \sin y \rangle$ and $\vec{N} = \vec{\nabla}F \Big|_P = \left\langle \frac{4}{\sqrt{2}}, \frac{4}{\sqrt{2}}, \frac{4}{\sqrt{2}} \right\rangle$. So the plane is $\vec{N} \cdot X = \vec{N} \cdot P$ or $\frac{4}{\sqrt{2}}x + \frac{4}{\sqrt{2}}y + \frac{4}{\sqrt{2}}z = \frac{4}{\sqrt{2}}2 + \frac{4}{\sqrt{2}}\frac{\pi}{4} + \frac{4}{\sqrt{2}}$ or $x + y + z = 3 + \frac{\pi}{4}$. The z-intercept occurs when x = y = 0. So the z-intercept is $c = 3 + \frac{\pi}{4}$.

- **8**. The point (x,y) = (2,1) is a critical point of the function $f(x,y) = 12xy x^3 8y^3$. Use the Second Derivative Test to classify this critical point.
 - a. Local Minimum
 - b. Local Maximum Correct
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails

Solution: $f_x = 12y - 3x^2$ $f_y = 12x - 24y^2$ We check: $f_x(2,1) = 24 - 24 = 0$ $f_y(2,1) = 24 - 24 = 0$, Yes, it's a critical point. $f_{xx} = -6x$ $f_{yy} = -48y$ $f_{xy} = 12$ $f_{xx}(2,1) = -12 < 0$ $f_{yy}(2,1) = -48 < 0$ $f_{xy}(2,1) = 12$ $D = f_{xx}f_{yy} - f_{xy}^2 = (-12)(-48) - 12^2 > 0$ Local Maximum **9**. (36 pts) Obi-Two is flying the Centurion Eagle through the Force, Desperation and Luck fields. The Force, *F*, depends on the Desperation, *D*, and Luck, *L*, by the relation: $F = 3DL^2$. Currently, the Desperation and Luck and their gradients are:

$$D = 3 \qquad \vec{\nabla}D = \langle 3, 0, 1 \rangle$$
$$L = 2 \qquad \vec{\nabla}L = \langle 1, 2, 0 \rangle$$

a. (23 pts) Obi-Two's current velocity is $\vec{v} = \langle 1, 2, 3 \rangle$. Find the rate that Obi-Two sees the Force changing.

Solution: The partial derivatives of \vec{F} are:

$$\frac{\partial F}{\partial D} = 3L^2 = 3 \cdot 2^2 = 12 \qquad \frac{\partial F}{\partial L} = 6 \cdot 3 \cdot 2 = 36$$

The derivatives of x, y, z, D and L are components of the velocity and the gradients. So by the Chain Rule, the derivative of F is:

$$\frac{dF}{dt} = \frac{\partial F}{\partial D} \left(\frac{\partial D}{\partial x} \frac{dx}{dt} + \frac{\partial D}{\partial y} \frac{dy}{dt} + \frac{\partial D}{\partial z} \frac{dz}{dt} \right) + \frac{\partial F}{\partial L} \left(\frac{\partial L}{\partial x} \frac{dx}{dt} + \frac{\partial L}{\partial y} \frac{dy}{dt} + \frac{\partial L}{\partial z} \frac{dz}{dt} \right)$$
$$= 12(3 \cdot 1 + 1 \cdot 3) + 36(1 \cdot 1 + 2 \cdot 2) = 72 + 180 = 252$$

b. (13 pts) In what direction should Obi-Two travel to increase the Force as fast as possible? HINT: Compute each (x, y, z) partial derivative separately.

Solution: The partial derivatives of \vec{F} are:

$$\frac{\partial F}{\partial D} = 3L^2 = 3 \cdot 2^2 = 12 \qquad \frac{\partial F}{\partial L} = 6DL = 6 \cdot 3 \cdot 2 = 36$$

The components of the gradient are the (x,y,z) partial derivatives of \vec{F} :

$$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial D} \frac{\partial D}{\partial x} + \frac{\partial F}{\partial L} \frac{\partial L}{\partial x} = 12 \cdot 3 + 36 \cdot 1 = 72$$

$$\frac{\partial F}{\partial y} = \frac{\partial F}{\partial D} \frac{\partial D}{\partial y} + \frac{\partial F}{\partial L} \frac{\partial L}{\partial y} = 12 \cdot 0 + 36 \cdot 2 = 72$$

$$\frac{\partial F}{\partial z} = \frac{\partial F}{\partial D} \frac{\partial D}{\partial z} + \frac{\partial F}{\partial L} \frac{\partial L}{\partial z} = 12 \cdot 1 + 36 \cdot 0 = 12$$

The Force increases fastest in the direction $\vec{\nabla}F = \langle 72, 72, 12 \rangle$. Alternatively:

$$\vec{\nabla}F = \frac{\partial F}{\partial D}\vec{\nabla}D + \frac{\partial F}{\partial L}\vec{\nabla}L$$

10. (20 pts) Find the point on the surface $z = \frac{1}{4x^2y^4}$ in the 1st octant which is closest to the origin. HINT: Write the constraint as $g = x^2y^4z = \frac{1}{4}$.

Solution: We minimize the square of the distance, $f = D^2 = x^2 + y^2 + z^2$. The constraint is $g = x^2y^4z = \frac{1}{4}$. The gradients are: $\vec{\nabla}V = \langle 2x, 2y, 2z \rangle$ $\vec{\nabla}g = \langle 2xy^4z, 4x^2y^3z, x^2y^4 \rangle$ The Lagrange equations are: $2x = \lambda 2xy^4z$ $2y = \lambda 4x^2y^3z$ $2z = \lambda x^2y^4$ Multiply the first by $\frac{x}{2}$, the second by $\frac{y}{4}$ and the third by z and equate: $\lambda x^2y^4z = x^2 = \frac{y^2}{2} = 2z^2$ So $x^2 = 2z^2$ $y^2 = 4z^2$ Plug into the constraint: $x^2y^4z = 2z^216z^4z = 32z^7 = \frac{1}{4}$ \Rightarrow $z^7 = \frac{1}{128}$ \Rightarrow $z = \frac{1}{2}$ $x = \sqrt{2}z = \frac{\sqrt{2}}{2}$ $y^2 = 4z^2 = 4(\frac{1}{2})^2 = 1$ $(x,y,z) = (\frac{\sqrt{2}}{2}, 1, \frac{1}{2})$