Name Section:						
MATH 221	Final Exam, Version A	Fall 2023	1-12	/60	14	/10
502,503	,	P. Yasskin	13	/10	15	/24
Multiple Choice: (5 points each. No part credit.)					Total	/104

1. Consider the triangle with vertices A = (2,4), B = (1,1) and C = (0,3). Find the angle at *B*.

- **a**. 30°
- **b**. 45°
- $\textbf{C}.~~60^{\circ}$
- $\textbf{d}. \ 120^{\circ}$
- **e**. 135°

- **2**. Find the arc length of the curve $\vec{r}(t) = \langle e^t, 2t, 2e^{-t} \rangle$ between (1,0,2) and $(e,2,2e^{-1})$. Hint: Look for a perfect square.
 - **a**. $e + 2e^{-1}$
 - **b**. $e + 2e^{-1} 3$
 - **c**. $e 2e^{-1}$
 - **d**. $e 2e^{-1} + 1$
 - **e**. $e 2e^{-1} 1$

- **3**. Find the point where the lines (x,y,z) = (3-t,2+t,2t) and (x,y,z) = (-1+2t,5-t,3+t) intersect. At this point x + y + z =
 - **a**. $\frac{17}{2}$
 - **b**. 9
 - **c**. $\frac{25}{3}$

 - **d**. 11
 - e. They do not intersect.

- **4**. Find the equation of the plane tangent to the graph of $f(x,y) = x^2y + xy^2$ at the point (2,1). Its *z*-intercept is
 - **a**. -12
 - **b**. -6
 - **c**. 0
 - **d**. 6
 - **e**. 12

- **5**. Find the plane tangent to the surface $x^2z^2 + y^4 = 5$ at the point (2,1,1).
 - **a**. 2x + y + z = 6
 - **b**. 2x + y + z = 5
 - **c**. x + y + 2z = 5
 - **d**. x y + 2z = 3
 - **e**. x y + 2z = 6

- **6**. The dimensions of a closed rectangular box are measured as 70 cm, 50 cm and 40 cm with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in the calculated surface area of the box.
 - **a**. 8
 - **b**. 16
 - **c**. 32
 - **d**. 64
 - **e**. 128

- 7. Compute the line integral $\int -y dx + x dy$ clockwise around the semicircle $x^2 + y^2 = 9$ from (-3,0) to (3,0). HINT: Parametrize the curve.
 - **a**. -9π
 - **b**. -3π
 - **c**. π
 - **d**. 3π
 - **e**. 9π

- 8. Compute $\int \vec{F} \cdot d\vec{s}$ for $\vec{F} = (y, x)$ along the curve $\vec{r}(t) = (e^{\cos(t^2)}, e^{\sin(t^2)})$ for $0 \le t \le \sqrt{\pi}$. HINT: Find a scalar potential.
 - **a**. $e \frac{1}{e}$
 - **b**. $\frac{1}{e} e$
 - c. $\frac{2}{e}$
 - **d**. 2*e*
 - **e**. 0

9. Compute $\oint_{S} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (-xy^2 + x^3, x^2y - y^3)$ counterclockwise around the square $[0,3] \times [0,2]$. Hint: Use a theorem.

- **a**. 6
- **b**. 12
- **c**. 16
- **d**. 24
- **e**. 36

- **10**. Find the mass of the region inside the upper half of the limaçon $r = 2 \cos\theta$ if the surface density is $\delta = y$.
 - **a**. $\frac{20}{3}$
 - **b**. $\frac{15}{3}$
 - **c**. $\frac{13}{3}$
 - **d**. $\frac{10}{3}$ **e**. $\frac{5}{3}$

- **11**. Consider the vector field $\vec{F} = \vec{\nabla} \times \vec{G}$ where $\vec{G} = \langle x^2 z, y^2 z, x^3 + y^3 \rangle$. In which quadrant is \vec{F} always diverging?
 - **a**. I
 - **b**. *II*
 - **c**. *III*
 - **d**. *IV*
 - e. None of them

12. Consider the cylinder *C* given by $x^2 + y^2 = 4$ for $2 \le z \le 4$ with normal pointing outward. Let *T* be the top circle and *B* be the bottom circle both oriented counterclockwise as seen from above. For a certain vector field \vec{F} we have:

 $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = 14 \quad \text{and} \quad \oint_{B} \vec{F} \cdot d\vec{s} = 3$ Compute $\oint_{T} \vec{F} \cdot d\vec{s}$. **a.** 17

a. 1/

b. 11

- **c**. 8
- **d**. -11
- **e**. −17

13. (10 points) Find the dimensions and volume of the largest box which sits on the *xy*-plane and whose upper vertices are on the elliptic paraboloid $z + 2x^2 + 3y^2 = 12$.

You do not need to show it is a maximum.

14. (10 points) Find the mass and center of mass of the conical **surface** $z = \sqrt{x^2 + y^2}$ for $z \le 2$ with density $\delta = x^2 + y^2$. The cone may be parametrize as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$.

15. (24 points) Verify Gauss' Theorem

$$\iiint_V \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$$

for the vector field $\vec{F} = \langle x, y, 2z \rangle$ and the solid bowl filled with water bounded by the surfaces

z = 0 and z = 3 and r = z + 1.

Be sure to check orientations. Use the following steps:

Left Hand Side:

- **a**. Compute the divergence of \vec{F} :
- **b**. Compute the left hand side: (Be careful with the bounds on r and z.)

Right Hand Side: The boundary surface consists of two disks and the side surface. **Side Surface** *S*:

The sides may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r-1)$

c. Compute the normal vector and check its orientation:

- **d**. Evaluate $\vec{F} = \langle x, y, 2z \rangle$ on the sides:
- e. Compute their dot product:
- f. Compute the flux through S: (Be careful with the bounds on r.)

(continued)

Top Disk T:

- g. Parametrize the top disk *T*. (Start from cylindrical coordinates.)
- h. Compute the normal vector and check its orientation:

- i. Evaluate $\vec{F} = \langle x, y, 2z \rangle$ on the top disk:
- j. Compute the flux through T: (Be careful with the bounds on r.)

Bottom Disk *B*:

- **k**. Parametrize the bottom disk *B*. (Start from cylindrical coordinates.)
- I. Compute the normal vector and check its orientation:

- **m**. Evaluate $\vec{F} = \langle x, y, 2z \rangle$ on the bottom disk:
- **n**. Compute the flux through B: (Be careful with the bounds on r.)
- o. Compute the TOTAL right hand side: