Name \qquad Section: \qquad
MATH 221
Final Exam, Version A
Fall 2023
502,503
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-12$	$/ 60$	14	$/ 10$
13	$/ 10$	15	$/ 24$
		Total	$/ 104$

1. Consider the triangle with vertices $A=(2,4), B=(1,1)$ and $C=(0,3)$.

Find the angle at B.
a. 30°
b. 45°
c. 60°
d. 120°
e. 135°
2. Find the arc length of the curve $\vec{r}(t)=\left\langle e^{t}, 2 t, 2 e^{-t}\right\rangle$ between $(1,0,2)$ and $\left(e, 2,2 e^{-1}\right)$. Hint: Look for a perfect square.
a. $e+2 e^{-1}$
b. $e+2 e^{-1}-3$
c. $e-2 e^{-1}$
d. $e-2 e^{-1}+1$
e. $e-2 e^{-1}-1$
3. Find the point where the lines $(x, y, z)=(3-t, 2+t, 2 t)$ and $(x, y, z)=(-1+2 t, 5-t, 3+t)$ intersect. At this point $x+y+z=$
a. $\frac{17}{2}$
b. 9
c. $\frac{25}{3}$
d. 11
e. They do not intersect.
4. Find the equation of the plane tangent to the graph of $f(x, y)=x^{2} y+x y^{2}$ at the point $(2,1)$. Its z-intercept is
a. -12
b. -6
c. 0
d. 6
e. 12
5. Find the plane tangent to the surface $x^{2} z^{2}+y^{4}=5$ at the point $(2,1,1)$.
a. $2 x+y+z=6$
b. $2 x+y+z=5$
c. $x+y+2 z=5$
d. $x-y+2 z=3$
e. $x-y+2 z=6$
6. The dimensions of a closed rectangular box are measured as $70 \mathrm{~cm}, \quad 50 \mathrm{~cm}$ and 40 cm with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in the calculated surface area of the box.
a. 8
b. 16
c. 32
d. 64
e. 128
7. Compute the line integral $\int-y d x+x d y$ clockwise around the semicircle $x^{2}+y^{2}=9$ from $(-3,0)$ to $(3,0)$.
HINT: Parametrize the curve.
a. -9π
b. -3π
c. π
d. 3π
e. 9π
8. Compute $\int \vec{F} \cdot d \vec{s}$ for $\vec{F}=(y, x)$ along the curve $\vec{r}(t)=\left(e^{\cos \left(t^{2}\right)}, e^{\sin \left(t^{2}\right)}\right)$ for $0 \leq t \leq \sqrt{\pi}$. HINT: Find a scalar potential.
a. $e-\frac{1}{e}$
b. $\frac{1}{e}-e$
c. $\frac{2}{e}$
d. $2 e$
e. 0
9. Compute $\oint_{S} \vec{F} \cdot d \vec{s}$ for $\vec{F}=\left(-x y^{2}+x^{3}, x^{2} y-y^{3}\right)$
counterclockwise around the square $[0,3] \times[0,2]$. Hint: Use a theorem.
a. 6
b. 12
c. 16
d. 24
e. 36
10. Find the mass of the region inside the upper half of the limaçon $r=2-\cos \theta$ if the surface density is $\delta=y$.
a. $\frac{20}{3}$
b. $\frac{15}{3}$

c. $\frac{13}{3}$
d. $\frac{10}{3}$
e. $\frac{5}{3}$
11. Consider the vector field $\vec{F}=\vec{\nabla} \times \vec{G}$ where $\vec{G}=\left\langle x^{2} z, y^{2} z, x^{3}+y^{3}\right\rangle$. In which quadrant is \vec{F} always diverging?
a. I
b. $I I$
c. $I I I$
d. $I V$
e. None of them
12. Consider the cylinder C given by $x^{2}+y^{2}=4$ for $2 \leq z \leq 4$ with normal pointing outward.
Let T be the top circle and B be the bottom circle both oriented counterclockwise as seen from above.
For a certain vector field \vec{F} we have:

$$
\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=14 \quad \text { and } \quad \oint_{B} \vec{F} \cdot d \vec{s}=3
$$

Compute $\oint_{T} \vec{F} \cdot d \vec{s}$.
a. 17
b. 11
c. 8
d. -11
e. -17

Work Out: (Points shown. Part credit possible. Show all work.)

13. (10 points) Find the dimensions and volume of the largest box which sits on the $x y$-plane and whose upper vertices are on the elliptic paraboloid $z+2 x^{2}+3 y^{2}=12$.

You do not need to show it is a maximum.

14. (10 points) Find the mass and center of mass of the conical surface $z=\sqrt{x^{2}+y^{2}}$ for $z \leq 2$ with density $\delta=x^{2}+y^{2}$. The cone may be parametrize as $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$.
15. (24 points) Verify Gauss' Theorem

$$
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot \overrightarrow{d S}
$$

for the vector field $\vec{F}=\langle x, y, 2 z\rangle$ and the solid bowl filled with water bounded by the surfaces

$$
z=0 \text { and } z=3 \text { and } r=z+1
$$

Be sure to check orientations. Use the following steps:

Left Hand Side:

a. Compute the divergence of \vec{F} :
b. Compute the left hand side: (Be careful with the bounds on r and z.)

Right Hand Side: The boundary surface consists of two disks and the side surface.
Side Surface S :
The sides may be parametrized by $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r-1)$
c. Compute the normal vector and check its orientation:
d. Evaluate $\vec{F}=\langle x, y, 2 z\rangle$ on the sides:
e. Compute their dot product:
f. Compute the flux through S : (Be careful with the bounds on r.)

Top Disk T :

g. Parametrize the top disk T. (Start from cylindrical coordinates.)
h. Compute the normal vector and check its orientation:
i. Evaluate $\vec{F}=\langle x, y, 2 z\rangle$ on the top disk:
j. Compute the flux through T : (Be careful with the bounds on r.)

Bottom Disk B :

k. Parametrize the bottom disk B. (Start from cylindrical coordinates.)
I. Compute the normal vector and check its orientation:
m. Evaluate $\vec{F}=\langle x, y, 2 z\rangle$ on the bottom disk:
n. Compute the flux through $B:$ (Be careful with the bounds on r.)
o. Compute the TOTAL right hand side:

