Name	e Section:					
MATH 221	Final Exam, Version B	Fall 2023	1-12	/60	14	/10
502,503		P. Yasskin	13	/10	15	/24
Multiple Choice: (5 points each. No part credit.)					Total	/104

2x - y - z = 0? **1**. Which of the following lines lies in the plane:

a. (x, y, z) = (1, 2, 3) + t(1, 1, 1)

b. (x,y,z) = (3,2,1) + t(1,1,1)

- **c**. (x,y,z) = (2,1,3) + t(1,1,1)
- **d**. (x,y,z) = (3,1,2) + t(1,1,1)
- **e**. (x,y,z) = (1,3,2) + t(1,1,1)

2. Find the arc length of the curve $\vec{r}(t) = (2t^2, t^3)$ between (0,0) and (2,1).

- **a**. $\frac{31}{27}$
- **b**. $\frac{61}{27}$
- **c**. $\frac{91}{27}$
- **d**. $\frac{31}{9}$
- **e**. $\frac{61}{9}$

- **3**. Find the point where the line $\frac{x-4}{3} = \frac{y-4}{2} = z-4$ intersects the plane 3x + 2y + z = 10. At this point x + y + z =
 - **a**. 0
 - **b**. 2
 - **c**. 4
 - **d**. 6
 - e. They do not intersect.

- **4**. Find the equation of the plane tangent to the graph of $z = 3x^2y 2y^3$ at the point (2,1). Its *z*-intercept is
 - **a**. -20
 - **b**. -14
 - **c**. 14
 - **d**. 20
 - **e**. 40

- **5**. Find the equation of the line perpendicular to the graph of $x^3y^2z 2x^2z^2 = 10$ at the point (1,3,2). This line intersects the *xy*-plane at:
 - **a.** $\left(-\frac{19}{3}, 2, 0\right)$ **b.** $\left(2, \frac{19}{3}, 0\right)$ **c.** $\left(-75, -21, 0\right)$ **d.** $\left(\frac{19}{3}, -2, 0\right)$ **e.** $\left(21, -75, 0\right)$

6. The volume of a cone is $V = \frac{1}{3}\pi r^2 h$.

The radius r is currently 3 cm and is increasing at 2 cm/sec. The height h is currently 4 cm and is decreasing at 1 cm/sec. Is the volume increasing or decreasing and at what rate?

- **a**. decreasing at 19π cm³/sec
- **b.** decreasing at 13π cm³/sec
- c. neither increasing nor decreasing
- **d**. increasing at 19π cm³/sec
- **e**. increasing at 13π cm³/sec

- 7. Compute the line integral $\int -y \, dx + x \, dy$ along the parabola $y = x^2$ from (1,1) to (2,4). HINT: Parametrize the curve.
 - **a**. $\frac{7}{3}$
 - **b**. $\frac{5}{3}$

 - **c**. $\frac{1}{3}$
 - **d**. 1
 - **e**. 3

8. Compute $\int_{\vec{r}} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (2x + y + z, 2y + x + z, 2z + x + y)$ along the curve $\vec{r}(t) = (t \cos t, t \sin t, t e^{t/\pi})$ between t = 0 and $t = \pi$.

HINT: Find a scalar potential.

- **a**. $\pi^2(1+e^2-e)$
- **b**. $\pi^2(1+e^2-2e)$
- **c**. $\pi^2(1+e^2+e)$
- **d**. $\pi^2(1+e^2+2e)$
- **e**. $\pi^2(1+e^2)$

9. Compute $\oint_C \vec{F} \cdot d\vec{s}$ for $\vec{F} = (-x^2y + x^3 - y^3, xy^2 + x^3 - y^3)$ counterclockwise around the circle $x^2 + y^2 = 9$. HINT: Use a theorem.

- **a**. 324π
- **b**. 162π
- **c**. 144*π*
- **d**. 72π
- **e**. 36π

- **10**. Find the area inside the cardioid $r = 1 + \cos \theta$ but outside the circle r = 1.
 - a. $\frac{\pi}{4}$
 - **b**. $\frac{\pi}{2}$
 - **c**. $2 \frac{\pi}{4}$
 - **d**. $2 + \frac{\pi}{4}$
 - **e**. $2 \frac{\pi}{2}$

- **11**. Compute $\oint \vec{\nabla} f \cdot d\vec{s}$ counterclockwise once around the polar curve $r = 3 + \cos(4\theta)$ for the function $f(x,y) = x^2y$.
 - **a**. 2π
 - **b**. 4π
 - **C**. 6π
 - **d**. 8π
 - **e**. 0

12. Consider the parabolic surface *P* given by $z = x^2 + y^2$ for $z \le 4$ with normal pointing up and in, the disk *D* given by $x^2 + y^2 \le 4$ and z = 4 with normal pointing up, and the volume *V* between them. For a certain vector field \vec{F} we have:

$$\iiint_{V} \vec{\nabla} \cdot \vec{F} \, dV = 14 \quad \text{and} \quad \iint_{D} \vec{F} \cdot d\vec{S} = 3$$

Compute
$$\iint_{P} \vec{F} \cdot d\vec{S}.$$

a. 17
b. 11
c. 8
d. -11
e. -17

13. (10 points) Find 3 numbers *a*, *b* and *c* whose sum is 12 for which ab + 2ac + 3bc is a maximum.

You do not need to show it is a maximum.

14. (10 points) Find the mass and center of mass of the cylindrical **surface** $x^2 + y^2 = 9$ for $0 \le z \le 2$ with density $\delta = z$. The cylinder may be parametrize as $\vec{R}(\theta, z) = (3\cos\theta, 3\sin\theta, z)$.

15. (24 points) Verify Stokes' Theorem

$$\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{S}$$

for the vector field $\vec{F} = (yz^2, -xz^2, z^3)$ and the cylinder $x^2 + y^2 = 9$ for $1 \le z \le 2$ oriented outward. Be sure to check orientations. Use the following steps:

Left Hand Side: The cylindrical surface may be parametrized by $\vec{R}(\theta, z) = (3\cos\theta, 3\sin\theta, z)$.

a. Compute the normal vector and check its orientation:

b. Compute the curl of \vec{F} and evaluate it on the cylinder.

- **c**. Compute the dot product of the curl of \vec{F} and the normal:
- d. Compute the surface integral:

(continued)

Right Hand Side: Let U be the upper circle and L be the lower circle.

- e. Parametrize *U*. Find the velocity and check its orientation:
- f. Evaluate $\vec{F} = (yz^2, -xz^2, z^3)$ on the circle and compute its dot product with the velocity:
- **g**. Compute the line integral $\oint_U \vec{F} \cdot d\vec{s}$
- h. Parametrize *L*. Find the velocity and check its orientation:
- i. Evaluate $\vec{F} = (yz^2, -xz^2, z^3)$ on the circle and compute its dot product with the velocity:
- j. Compute the line integral $\oint_L \vec{F} \cdot d\vec{s}$

k. Combine $\oint_U \vec{F} \cdot d\vec{s}$ and $\oint_L \vec{F} \cdot d\vec{s}$ to get $\oint_{\partial C} \vec{F} \cdot d\vec{s}$.