Name \qquad Section: \qquad
MATH 221
Final Exam, Version B
Fall 2023
502,503
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-12$	$/ 60$	14	$/ 10$
13	$/ 10$	15	$/ 24$
		Total	$/ 104$

1. Which of the following lines lies in the plane: $2 x-y-z=0$?
a. $(x, y, z)=(1,2,3)+t(1,1,1)$
b. $(x, y, z)=(3,2,1)+t(1,1,1)$
c. $(x, y, z)=(2,1,3)+t(1,1,1)$
d. $(x, y, z)=(3,1,2)+t(1,1,1)$
e. $(x, y, z)=(1,3,2)+t(1,1,1)$
2. Find the arc length of the curve $\vec{r}(t)=\left(2 t^{2}, t^{3}\right)$ between $(0,0)$ and $(2,1)$.
a. $\frac{31}{27}$
b. $\frac{61}{27}$
c. $\frac{91}{27}$
d. $\frac{31}{9}$
e. $\frac{61}{9}$
3. Find the point where the line $\frac{x-4}{3}=\frac{y-4}{2}=z-4$ intersects the plane $3 x+2 y+z=10$. At this point $x+y+z=$
a. 0
b. 2
c. 4
d. 6
e. They do not intersect.
4. Find the equation of the plane tangent to the graph of $z=3 x^{2} y-2 y^{3}$ at the point $(2,1)$. Its z-intercept is
a. -20
b. -14
c. 14
d. 20
e. 40
5. Find the equation of the line perpendicular to the graph of $x^{3} y^{2} z-2 x^{2} z^{2}=10$ at the point $(1,3,2)$. This line intersects the $x y$-plane at:
a. $\left(-\frac{19}{3}, 2,0\right)$
b. $\left(2, \frac{19}{3}, 0\right)$
c. $(-75,-21,0)$
d. $\left(\frac{19}{3},-2,0\right)$
e. $(21,-75,0)$
6. The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.

The radius r is currently 3 cm and is increasing at $2 \mathrm{~cm} / \mathrm{sec}$.
The height h is currently 4 cm and is decreasing at $1 \mathrm{~cm} / \mathrm{sec}$.
Is the volume increasing or decreasing and at what rate?
a. decreasing at $19 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
b. decreasing at $13 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
c. neither increasing nor decreasing
d. increasing at $19 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
e. increasing at $13 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
7. Compute the line integral $\int-y d x+x d y$ along the parabola $y=x^{2}$ from $(1,1)$ to $(2,4)$. HINT: Parametrize the curve.
a. $\frac{7}{3}$
b. $\frac{5}{3}$
c. $\frac{1}{3}$
d. 1
e. 3
8. Compute $\int_{\vec{r}} \vec{F} \cdot d \vec{s}$ for $\vec{F}=(2 x+y+z, 2 y+x+z, 2 z+x+y)$ along the curve $\vec{r}(t)=\left(t \cos t, t \sin t, t e^{t / \pi}\right)$ between $t=0$ and $t=\pi$.

HINT: Find a scalar potential.
a. $\pi^{2}\left(1+e^{2}-e\right)$
b. $\pi^{2}\left(1+e^{2}-2 e\right)$
c. $\pi^{2}\left(1+e^{2}+e\right)$
d. $\pi^{2}\left(1+e^{2}+2 e\right)$
e. $\pi^{2}\left(1+e^{2}\right)$
9. Compute $\oint_{C} \vec{F} \cdot d \vec{s}$ for $\vec{F}=\left(-x^{2} y+x^{3}-y^{3}, x y^{2}+x^{3}-y^{3}\right)$
counterclockwise around the circle $x^{2}+y^{2}=9$.
HINT: Use a theorem.
a. 324π
b. 162π
c. 144π
d. 72π
e. 36π
10. Find the area inside the cardioid $r=1+\cos \theta$ but outside the circle $r=1$.
a. $\frac{\pi}{4}$
b. $\frac{\pi}{2}$
c. $2-\frac{\pi}{4}$
d. $2+\frac{\pi}{4}$
e. $2-\frac{\pi}{2}$

11. Compute $\oint \vec{\nabla} f \cdot d \vec{s}$ counterclockwise once around the polar curve $r=3+\cos (4 \theta)$
for the function $f(x, y)=x^{2} y$.
a. 2π
b. 4π
c. 6π

d. 8π
e. 0
12. Consider the parabolic surface P given by $z=x^{2}+y^{2}$ for $z \leq 4$ with normal pointing up and in, the disk D given by $x^{2}+y^{2} \leq 4$ and $z=4$ with normal pointing up, and the volume V between them.
For a certain vector field \vec{F} we have:

$$
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=14 \quad \text { and } \quad \iint_{D} \vec{F} \cdot d \vec{S}=3
$$

Compute $\iint_{P} \vec{F} \cdot d \vec{S}$.
a. 17
b. 11
c. 8
d. -11
e. -17
13. (10 points) Find 3 numbers a, b and c whose sum is 12 for which $a b+2 a c+3 b c$ is a maximum.
You do not need to show it is a maximum.
14. (10 points) Find the mass and center of mass of the cylindrical surface $x^{2}+y^{2}=9$ for $0 \leq z \leq 2$ with density $\delta=z$. The cylinder may be parametrize as $\vec{R}(\theta, z)=(3 \cos \theta, 3 \sin \theta, z)$.
15. (24 points) Verify Stokes' Theorem

$$
\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial C} \vec{F} \cdot d \vec{s}
$$

for the vector field $\vec{F}=\left(y z^{2},-x z^{2}, z^{3}\right)$ and the cylinder $x^{2}+y^{2}=9$ for $1 \leq z \leq 2$ oriented outward.

Be sure to check orientations. Use the following steps:
Left Hand Side: The cylindrical surface may be parametrized by $\vec{R}(\theta, z)=(3 \cos \theta, 3 \sin \theta, z)$.
a. Compute the normal vector and check its orientation:
b. Compute the curl of \vec{F} and evaluate it on the cylinder.
c. Compute the dot product of the curl of \vec{F} and the normal:
d. Compute the surface integral:

Right Hand Side: Let U be the upper circle and L be the lower circle.
e. Parametrize U. Find the velocity and check its orientation:
f. Evaluate $\vec{F}=\left(y z^{2},-x z^{2}, z^{3}\right)$ on the circle and compute its dot product with the velocity:
g. Compute the line integral $\oint_{U} \vec{F} \cdot d \vec{s}$
h. Parametrize L. Find the velocity and check its orientation:
i. Evaluate $\vec{F}=\left(y z^{2},-x z^{2}, z^{3}\right)$ on the circle and compute its dot product with the velocity:
j. Compute the line integral $\oint_{L} \vec{F} \cdot d \vec{s}$
k. Combine $\oint_{U} \vec{F} \cdot d \vec{s}$ and $\oint_{L} \vec{F} \cdot d \vec{s}$ to get $\oint_{\partial C} \vec{F} \cdot d \vec{s}$.

