Name $\qquad$
MATH 221 Exam 1 Version H
Fall 2019
Section 204
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

| $1-9$ | $/ 54$ | 11 | $/ 15$ |
| ---: | ---: | ---: | ---: |
| 10 | $/ 36$ | Total | $/ 105$ |

1. Find the angle between the vectors $\vec{a}=\langle 1,2,1\rangle$ and $\vec{b}=\langle 0,1,1\rangle$.
a. $90^{\circ}$
b. $60^{\circ}$
c. $45^{\circ}$
d. $30^{\circ}$
e. $0^{\circ}$
2. Two tugboats are pulling on a barge with the forces: $\quad \vec{F}_{1}=\langle 4,2\rangle$ and $\vec{F}_{2}=\langle-2,1\rangle$ They move the barge from $P=(1,0)$ to $Q=(2,4)$. Find the work done.
a. 12
b. 14
c. 16
d. 18
e. 20
3. Is the permutation $p=(3,5,2,6,1,4)$ odd or even? Find its inverse permutation.
a. Odd $\bar{p}=(5,3,1,6,2,4)$
b. Odd $\quad \bar{p}=(4,2,6,1,3,5)$
c. Even $\quad \bar{p}=(5,3,1,6,2,4)$
d. Even $\quad \bar{p}=(4,2,6,1,3,5)$
4. Compute the determinant: $D=\left|\begin{array}{cccc}2 & 0 & 0 & 1 \\ 0 & 3 & 4 & 0 \\ 0 & 4 & 5 & 0 \\ 1 & 0 & 0 & 6\end{array}\right|$
a. -11
b. 11
c. -13
d. 13
e. 0
5. Find the area of the triangle with vertices $A=(2,3,4), \quad B=(4,3,2)$ and $C=(4,2,4)$.
a. $\sqrt{3}$
b. $\sqrt{6}$
c. 6
d. $\sqrt{12}$
e. 12
6. Find a vector $\vec{w}$ of length 6 in the same direction as $\vec{v}=\langle 2,1,-2\rangle$. The sum of its components is
a. 12
b. 8
c. 6
d. 2
e. 1 .
7. Classify the surface: $2 x^{2}-8 x-y^{2}+6 y+z^{2}=2$.
a. Hyperboloid of 1 sheet
b. Hyperboloid of 2 sheets
c. Cone
d. Hyperbolic Paraboloid
e. Hyperbolic Cylinder
8. Find the point where the line $(x, y, z)=(1+3 t, 2+2 t, 3+t)$ intersects the plane $2 x-y+z=13$. The sum of the components is:
a. -6
b. 6
c. 12
d. 18
e. No intersection. They are parallel.
9. Find the plane through the point $P=(0,5,3)$ with tangent vectors $\vec{u}=\langle 2,1,3\rangle$ and $\vec{v}=\langle-1,2,-2\rangle$. Its $z$-intercept is:
a. $z=2$
b. $z=4$
c. $z=5$
d. $z=10$
e. $z=20$

Work Out: (Points indicated. Part credit possible. Show all work.)
10. (36 points) For the curve $\vec{r}(t)=\left\langle t, 2 e^{t}, e^{2 t}\right\rangle$ compute each of the following:
a. (6 pts) The velocity $\vec{v}$

$$
\vec{v}=
$$

$\qquad$
b. (6 pts) The speed $\frac{d s}{d t} \quad$ (Simplify!)

$$
\frac{d s}{d t}=
$$

c. (6 pts) The tangential acceleration $a_{T}$
$\qquad$

$$
a_{T}=
$$

d. (6 pts) The length of this curve between $(0,2,1)$ and $\left(1,2 e, e^{2}\right)$.

$$
L=
$$

$\qquad$
e. (6 pts) The average value of the temperature along this curve between ( $0,2,1$ ) and ( $1,2 e, e^{2}$ ) if the temperature is $T=y z$.

$$
T_{\mathrm{ave}}=
$$

$\qquad$
f. (6 pts) The work done to move a bead along of a wire in the shape of this curve between $(0,2,1)$ and $\left(1,2 e, e^{2}\right)$ by the force $\vec{F}=\langle 0, z, y\rangle$.

$$
W=
$$

$\qquad$
11. (15 points) Consider the two straight lines:

$$
\begin{array}{ll}
L_{1}: & (x, y, z)=(2+t, 3,4+2 t) \\
L_{2}: & (x, y, z)=(1,2+t, 3-2 t)
\end{array}
$$

Are they parallel or skew or do they intersect? If they intersect, find the point of intersection.

