Name_____

MATH 221	Exam 1 Version H	Fall 2019	1-9	/54	11	/15
Section 204		P. Yasskin	10	/36	Total	/105
Multiple Choic	e: (6 points each. No	part credit.)				,

- **1**. Find the angle between the vectors $\vec{a} = \langle 1, 2, 1 \rangle$ and $\vec{b} = \langle 0, 1, 1 \rangle$.
 - **a**. 90°
 - **b**. 60°
 - **c**. 45°
 - **d**. 30°
 - $\textbf{e}. \quad 0^{\circ}$

- **2**. Two tugboats are pulling on a barge with the forces: $\vec{F}_1 = \langle 4, 2 \rangle$ and $\vec{F}_2 = \langle -2, 1 \rangle$ They move the barge from P = (1,0) to Q = (2,4). Find the work done.
 - **a**. 12
 - **b**. 14
 - **c**. 16
 - **d**. 18
 - **e**. 20
- **3**. Is the permutation p = (3, 5, 2, 6, 1, 4) odd or even? Find its inverse permutation.
 - **a**. Odd $\bar{p} = (5,3,1,6,2,4)$
 - **b**. Odd $\bar{p} = (4, 2, 6, 1, 3, 5)$
 - **c**. Even $\bar{p} = (5,3,1,6,2,4)$
 - **d**. Even $\bar{p} = (4, 2, 6, 1, 3, 5)$

4 . Compute the determinant:	<i>D</i> =	2 0 0 1	0 3 4 0	0 4 5 0	1 0 0 6	
a 11		1				I

- **b**. 11
- **c**. −13
- **d**. 13
- **e**. 0

- 5. Find the area of the triangle with vertices A = (2,3,4), B = (4,3,2) and C = (4,2,4).
 - **a**. √3
 - **b**. $\sqrt{6}$
 - **c**. 6
 - **d**. $\sqrt{12}$
 - **e**. 12

- **6**. Find a vector \vec{w} of length 6 in the same direction as $\vec{v} = \langle 2, 1, -2 \rangle$. The sum of its components is
 - **a**. 12
 - **b**. 8
 - **c**. 6
 - **d**. 2
 - **e**. 1.

- 7. Classify the surface: $2x^2 8x y^2 + 6y + z^2 = 2$.
 - **a**. Hyperboloid of 1 sheet
 - **b**. Hyperboloid of 2 sheets
 - c. Cone
 - d. Hyperbolic Paraboloid
 - e. Hyperbolic Cylinder

- 8. Find the point where the line (x,y,z) = (1 + 3t, 2 + 2t, 3 + t) intersects the plane 2x y + z = 13. The sum of the components is:
 - **a**. -6
 - **b**. 6
 - **c**. 12
 - **d**. 18
 - e. No intersection. They are parallel.

- **9**. Find the plane through the point P = (0,5,3) with tangent vectors $\vec{u} = \langle 2,1,3 \rangle$ and $\vec{v} = \langle -1,2,-2 \rangle$. Its *z*-intercept is:
 - **a**. *z* = 2
 - **b**. z = 4
 - **c**. *z* = 5
 - **d**. z = 10
 - **e**. *z* = 20

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (36 points) For the curve $\vec{r}(t) = \langle t, 2e^t, e^{2t} \rangle$ compute each of the following: **a**. (6 pts) The velocity \vec{v}

 $\vec{v} =$ _____

 $\frac{ds}{dt} =$ _____

 $a_T =$ _____

L = _____

- **b**. (6 pts) The speed $\frac{ds}{dt}$ (Simplify!)
- c. (6 pts) The tangential acceleration a_T
- **d**. (6 pts) The length of this curve between (0,2,1) and $(1,2e,e^2)$.

e. (6 pts) The average value of the temperature along this curve between (0,2,1) and $(1,2e,e^2)$ if the temperature is T = yz.

*T*_{ave} = _____

f. (6 pts) The work done to move a bead along of a wire in the shape of this curve between (0,2,1) and $(1,2e,e^2)$ by the force $\vec{F} = \langle 0,z,y \rangle$.

11. (15 points) Consider the two straight lines:

$$L_1: (x,y,z) = (2+t,3,4+2t)$$

$$L_2: (x,y,z) = (1,2+t,3-2t)$$

Are they parallel or skew or do they intersect? If they intersect, find the point of intersection.