Name \qquad
MATH 221 Exam 2 Version H
Fall 2019
Section 204
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

$1-8$	$/ 48$	11	$/ 16$
9	$/ 10$	12	$/ 25$
10	$/ 5$	Total	$/ 104$

1. Find the equation of the plane tangent to $z=x^{3} y+x y^{2}$ at the point $(x, y)=(1,2)$.

Its z-intercept is:
a. $c=-14$
b. $c=-12$
c. $c=-6$
d. $c=6$
e. $c=14$
2. The volume of a frustum of a cone is $V=\frac{\pi}{3}\left(R^{2}+R r+r^{2}\right) h$ where R is the bottom radius, r is the top radius and h is the height. Currently, $R=2 \mathrm{~cm}, r=1 \mathrm{~cm}$ and $h=3 \mathrm{~cm}$. Use differentials to estimate the change in volume if R and r increase by 0.1 cm while h decreases by 0.3.
a. $\Delta V \approx 3.2 \pi$
b. $\Delta V \approx 1.6 \pi$
c. $\Delta V \approx 0.8 \pi$
d. $\Delta V \approx 0.6 \pi$
e. $\Delta V \approx 0.2 \pi$
3. At the right is a tree diagram showing f as a function of x, y and z which are functions of u, v and w which are functions of r, s and t as indicated.
Below are values of a bunch partial derivatives.
Use this information to compute $\frac{\partial f}{\partial r}$.

$$
\begin{array}{llllll}
\frac{\partial f}{\partial x}=2 & \frac{\partial f}{\partial y}=3 & \frac{\partial f}{\partial z}=4 & & \\
\frac{\partial x}{\partial u}=5 & \frac{\partial x}{\partial v}=6 & \frac{\partial y}{\partial v}=7 & \frac{\partial y}{\partial w}=8 & \frac{\partial z}{\partial u}=9 & \frac{\partial z}{\partial w}=10 \\
\frac{\partial u}{\partial r}=6 & \frac{\partial u}{\partial s}=5 & \frac{\partial v}{\partial r}=4 & \frac{\partial v}{\partial t}=3 & \frac{\partial w}{\partial s}=2 & \frac{\partial w}{\partial t}=1
\end{array}
$$

a. 163
b. 212
c. 358
d. 396
e. 408
4. The point $(x, y)=(-1,2)$ is a critical point of the function $f=8 x^{3}-y^{3}-12 x y$. Use the $2^{\text {nd }}$ Derivative Test to classify it as:
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. The $2^{\text {nd }}$ Derivative Test FAILS.
5. If x, y and z are related by $x \cos y+z \sin y=3$. Find $\frac{\partial z}{\partial x}$ at the point $(x, y, z)=\left(\sqrt{3}, \frac{\pi}{6}, 3\right)$.
a. $\frac{1}{\sqrt{3}}$
b. $\frac{-1}{\sqrt{3}}$
c. $\sqrt{3}$
d. $-\sqrt{3}$
e. $\frac{1}{3}$
6. If x, y and z are related by $x \cos y+z \sin y=3$. Find $\frac{\partial z}{\partial t}$ at the instant when:

$$
(x, y, z)=\left(\sqrt{3}, \frac{\pi}{6}, 3\right) \quad \frac{d x}{d t}=\frac{1}{\sqrt{3}} \quad \frac{d y}{d t}=\frac{1}{\sqrt{3}}
$$

a. -1
b. -2
c. -3
d. $-\sqrt{3}$
e. $\frac{-1}{\sqrt{3}}$
7. Find the tangent plane to the graph of the equation $x y-z y=-4$ at the point $(x, y, z)=(1,2,3)$. Its z-intercept is:
a. $c=-8$
b. $c=-4$
c. $c=0$
d. $c=4$
e. $c=8$
8. Queen Lena is flying the Centurion Eagle through a deadly Sythion field whose density is $S=x y z \frac{\text { Sythions }}{\text { microlightyear }^{3}}$. The top speed of the Centurion Eagle is $14 \frac{\text { microlightyears }}{\text { lightyear }}$. If Lena is located at the point $(x, y, z)=(3,2,1)$, what should her velocity be to decrease the Sythion density as fast as possible?
a. $\langle-4,-6,-12\rangle$
b. $\langle-2,-3,-6\rangle$
c. $\langle-28,42,-84\rangle$
d. $\langle 4,6,12\rangle$
e. $\langle 2,3,6\rangle$

Work Out: (Points indicated. Part credit possible. Show all work.)
9. (10 points) Prove whether the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{6}+y^{6}}{x^{4}+2 x^{2} y^{2}+y^{4}} \quad$ converges or diverges.

If it converges, find the limit.
10. (5 points) Here is the plot of a vector field \vec{F} in \mathbb{R}^{2}.

Shade in the region where $\vec{\nabla} \cdot \vec{F}>0$. Explain why.

11. (16 points) Let $\vec{F}=\langle x, 2 y,-3 z\rangle$.
a. Find a scalar potential, for \vec{F} or show one does not exist.
b. Find a vector potential, \vec{A}, for \vec{F} or show one does not exist.

Explain all steps neatly and clearly.
12. (25 points) Find the largest and smallest values of the function $f(x, y, z)=x y z$ on the ellipsoid $x^{2}+4 y^{2}+9 z^{2}=108$.

