Name_____ Sec____

MATH 251 Final Exam Spring 2008

Sections 508 P. Yasskin

Multiple Choice: (5 points each. No part credit.)

- **1**. Which of the following lines lies in the plane: 2x y z = 0?
 - **a**. (x, y, z) = (1, 2, 3) + t(1, 1, 1)
 - **b**. (x, y, z) = (3, 2, 1) + t(1, 1, 1)
 - **c**. (x, y, z) = (2, 1, 3) + t(1, 1, 1)
 - **d**. (x, y, z) = (3, 1, 2) + t(1, 1, 1)
 - **e**. (x, y, z) = (1, 3, 2) + t(1, 1, 1)

- **2**. Find the equation of the plane tangent to the graph of the function $f(x,y) = x^2y + xy^2$ at the point (2,1). Then the *z*-intercept is
 - **a**. -12
 - **b**. -6
 - **c**. 0
 - **d**. 6
 - **e**. 12

1-13	/65
14	/25
15	/15
Total	/105

- **3**. Find the arc length of the curve $\vec{r}(t) = (e^t, 2t, 2e^{-t})$ between (1, 0, 2) and $(e, 2, 2e^{-1})$. Hint: Look for a perfect square.
 - **a.** $e 2e^{-1}$ **b.** $1 + e - 2e^{-1}$ **c.** $e - 2e^{-1} - 1$ **d.** $e + 2e^{-1}$ **e.** $e + 2e^{-1} - 3$

- **4**. Find the tangential acceleration a_T of the curve $\vec{r}(t) = (e^t, 2t, 2e^{-t})$. Hint: Which formula is easier?
 - **a**. $e^t + 2e^{-t}$
 - **b.** $e^t + 4e^{-t}$
 - **c**. $e^t 2e^{-t}$
 - **d**. $e^t 4e^{-t}$
 - **e**. $e^{2t} 4e^{-2t}$

- 5. The volume of a cone is $V = \frac{1}{3}\pi r^2 h$. If the radius *r* is currently 3 cm and increasing at 2 cm/sec while the height *h* is currently 4 cm and decreasing at 1 cm/sec, is the volume increasing or decreasing and at what rate?
 - **a**. decreasing at 19π cm³/sec
 - **b.** decreasing at 13π cm³/sec
 - c. neither increasing nor decreasing
 - **d**. increasing at 13π cm³/sec
 - **e**. increasing at 19π cm³/sec

- **6**. Which of the following is a local maximum of $f(x, y) = \sin(x)\sin(y)$?
 - **a**. (0,0)
 - **b**. $\left(\frac{\pi}{2}, 0\right)$
 - **c**. (π, π)
 - **d**. $\left(0, \frac{\pi}{2}\right)$
 - e. None of the above

7. Find the equation of the plane tangent to the surface $\frac{x^2}{z^2} + \frac{y^3}{z^3} = 17$ at the point (3,2,1).

Then the *z*-intercept is

- **a**. 0
- **b**. -42
- **c**. 42
- **d**. −18
- **e**. 18

- 8. Compute $\int \vec{F} \cdot d\vec{s}$ counterclockwise around the circle $x^2 + y^2 = 4$ for the vector field $\vec{F} = \left(-x^4y + \frac{1}{3}x^2y^3, xy^4 + x^3y^2\right)$. Hint: Use Green's Theorem and factor the integrand.
 - **a.** $\frac{4\pi}{3}$ **b.** $\frac{8\pi}{3}$ **c.** $\frac{16\pi}{3}$
 - **d**. $\frac{32\pi}{3}$
 - **e**. $\frac{64\pi}{3}$

- **9**. Find the mass of the half cylinder $x^2 + y^2 \le 4$ for $0 \le z \le 10$ and $y \ge 0$ if the density is $\rho = x^2 + y^2$.
 - **a**. 10π
 - **b**. 20π
 - **c**. 40π
 - **d**. 80π
 - **e**. 160π

- **10**. Find the center of mass of the half cylinder $x^2 + y^2 \le 4$ for $0 \le z \le 10$ and $y \ge 0$ if the density is $\rho = x^2 + y^2$.
 - **a**. (0,1,5)

b.
$$\left(0, \frac{8}{5\pi}, 5\right)$$

c. $\left(0, \frac{5\pi}{8}, 5\right)$
d. $\left(0, \frac{16}{5\pi}, 5\right)$
e. $\left(0, \frac{5\pi}{16}, 5\right)$

- **11**. Find the area inside the cardioid $r = 1 + \cos \theta$ but outside the circle r = 1.
 - a. $\frac{\pi}{4}$
 - **b**. $\frac{\pi}{2}$
 - **c**. $2 \frac{\pi}{4}$
 - **d**. $2 + \frac{\pi}{4}$
 - **e**. $2 \frac{\pi}{2}$

- **12**. Compute $\oint \vec{\nabla} f \cdot d\vec{s}$ counterclockwise once around the polar curve $r = 3 + \cos(4\theta)$ for the function $f(x, y) = x^2 y$.
 - **a**. 2π
 - **b**. 4π
 - **C**. 6π
 - **d**. 8π
 - **e**. 0

13. Gauss' Theorem states

$$\iiint_{H} \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\partial H} \vec{F} \cdot d\vec{S}$$

Compute either integral for the solid hemisphere, H,

given by $x^2 + y^2 + z^2 \le 4$ with $z \ge 0$ and the vector field $\vec{F} = (xz^2, yz^2, 0).$

Notice that the boundary of the solid hemisphere ∂H consists of the hemisphere surface *S* given by $x^2 + y^2 + z^2 = 4$ with $z \ge 0$ and the disk *D* given by $x^2 + y^2 \le 4$ with z = 0.

- **a**. $\frac{64\pi}{15}$
- **b**. $\frac{128\pi}{15}$
- **c**. $\frac{8}{3}\pi^2$
- **d**. $\frac{32}{3}\pi^2$
- **e**. $\frac{64}{3}\pi^2$

14. (25 points) Verify Stokes' Theorem $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{s}$ for the cone *C* given by $z = 2\sqrt{x^2 + y^2}$ for $z \le 8$ oriented up and in, and the vector field $\vec{F} = (yz, -xz, z)$.

Be sure to check and explain the orientations. Use the following steps:

- **a**. Note: The cone may be parametrized as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 2r)$ Compute the surface integral by successively finding:
 - $\vec{e}_r, \vec{e}_\theta, \vec{N}, \vec{\nabla} \times \vec{F}, \vec{\nabla} \times \vec{F} (\vec{R}(r,\theta)), \iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$

Recall: $\vec{F} = (yz, -xz, z)$

b. Compute the line integral by parametrizing the boundary curve and successively finding:

$$\vec{r}(\theta), \quad \vec{v}, \quad \vec{F}(\vec{r}(\theta)), \quad \oint_{\partial C} \vec{F} \cdot d\vec{s}$$

15. (15 points) A rectangular solid sits on the *xy*-plane with its top four vertices on the paraboloid $z = 4 - x^2 - 4y^2$. Find the dimensions and volume of the largest such box.

