$\qquad$
MATH 251 Final Exam Spring 2008

Sections 508
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

| $1-13$ | $/ 65$ |
| :---: | ---: |
| 14 | $/ 25$ |
| 15 | $/ 15$ |
| Total | $/ 105$ |

1. Which of the following lines lies in the plane: $2 x-y-z=0$ ?
a. $(x, y, z)=(1,2,3)+t(1,1,1)$
b. $(x, y, z)=(3,2,1)+t(1,1,1)$
c. $(x, y, z)=(2,1,3)+t(1,1,1)$
d. $(x, y, z)=(3,1,2)+t(1,1,1)$
e. $(x, y, z)=(1,3,2)+t(1,1,1)$
2. Find the equation of the plane tangent to the graph of the function $f(x, y)=x^{2} y+x y^{2}$ at the point $(2,1)$. Then the $z$-intercept is
a. -12
b. -6
c. 0
d. 6
e. 12
3. Find the arc length of the curve $\vec{r}(t)=\left(e^{t}, 2 t, 2 e^{-t}\right)$ between $(1,0,2)$ and $\left(e, 2,2 e^{-1}\right)$. Hint: Look for a perfect square.
a. $e-2 e^{-1}$
b. $1+e-2 e^{-1}$
c. $e-2 e^{-1}-1$
d. $e+2 e^{-1}$
e. $e+2 e^{-1}-3$
4. Find the tangential acceleration $a_{T}$ of the curve $\vec{r}(t)=\left(e^{t}, 2 t, 2 e^{-t}\right)$. Hint: Which formula is easier?
a. $e^{t}+2 e^{-t}$
b. $e^{t}+4 e^{-t}$
c. $e^{t}-2 e^{-t}$
d. $e^{t}-4 e^{-t}$
e. $e^{2 t}-4 e^{-2 t}$
5. The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.

If the radius $r$ is currently 3 cm and increasing at $2 \mathrm{~cm} / \mathrm{sec}$ while the height $h$ is currently 4 cm and decreasing at $1 \mathrm{~cm} / \mathrm{sec}$, is the volume increasing or decreasing and at what rate?
a. decreasing at $19 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
b. decreasing at $13 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
c. neither increasing nor decreasing
d. increasing at $13 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
e. increasing at $19 \pi \mathrm{~cm}^{3} / \mathrm{sec}$
6. Which of the following is a local maximum of $f(x, y)=\sin (x) \sin (y)$ ?
a. $(0,0)$
b. $\left(\frac{\pi}{2}, 0\right)$
c. $(\pi, \pi)$
d. $\left(0, \frac{\pi}{2}\right)$
e. None of the above
7. Find the equation of the plane tangent to the surface $\frac{x^{2}}{z^{2}}+\frac{y^{3}}{z^{3}}=17$ at the point $(3,2,1)$. Then the $z$-intercept is
a. 0
b. -42
c. 42
d. -18
e. 18
8. Compute $\int \vec{F} \cdot d \vec{s}$ counterclockwise around the circle $x^{2}+y^{2}=4$ for the vector field $\vec{F}=\left(-x^{4} y+\frac{1}{3} x^{2} y^{3}, x y^{4}+x^{3} y^{2}\right)$.
Hint: Use Green's Theorem and factor the integrand.
a. $\frac{4 \pi}{3}$
b. $\frac{8 \pi}{3}$
c. $\frac{16 \pi}{3}$
d. $\frac{32 \pi}{3}$
e. $\frac{64 \pi}{3}$
9. Find the mass of the half cylinder $x^{2}+y^{2} \leq 4$ for $0 \leq z \leq 10$ and $y \geq 0$ if the density is $\rho=x^{2}+y^{2}$.
a. $10 \pi$
b. $20 \pi$
c. $40 \pi$
d. $80 \pi$
e. $160 \pi$
10. Find the center of mass of the half cylinder $x^{2}+y^{2} \leq 4$ for $0 \leq z \leq 10$ and $y \geq 0$ if the density is $\rho=x^{2}+y^{2}$.
a. $(0,1,5)$
b. $\left(0, \frac{8}{5 \pi}, 5\right)$
c. $\left(0, \frac{5 \pi}{8}, 5\right)$
d. $\left(0, \frac{16}{5 \pi}, 5\right)$
e. $\left(0, \frac{5 \pi}{16}, 5\right)$
11. Find the area inside the cardioid $r=1+\cos \theta$ but outside the circle $r=1$.
a. $\frac{\pi}{4}$
b. $\frac{\pi}{2}$
c. $2-\frac{\pi}{4}$

d. $2+\frac{\pi}{4}$
e. $2-\frac{\pi}{2}$
12. Compute $\oint \vec{\nabla} f \cdot d \vec{s}$ counterclockwise once around the polar curve $r=3+\cos (4 \theta)$ for the function $f(x, y)=x^{2} y$.
a. $2 \pi$
b. $4 \pi$

C. $6 \pi$
d. $8 \pi$
e. 0
13. Gauss' Theorem states $\quad \iiint_{H} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial H} \vec{F} \cdot d \vec{S}$

Compute either integral for the solid hemisphere, $H$,
given by $\quad x^{2}+y^{2}+z^{2} \leq 4$ with $z \geq 0$

and the vector field $\quad \vec{F}=\left(x z^{2}, y z^{2}, 0\right)$.
Notice that the boundary of the solid hemisphere $\partial H$ consists of the hemisphere surface $S$ given by $x^{2}+y^{2}+z^{2}=4$ with $z \geq 0$ and the disk $D$ given by $x^{2}+y^{2} \leq 4$ with $z=0$.
a. $\frac{64 \pi}{15}$
b. $\frac{128 \pi}{15}$
c. $\frac{8}{3} \pi^{2}$
d. $\frac{32}{3} \pi^{2}$
e. $\frac{64}{3} \pi^{2}$

## Work Out: (Part credit possible. Show all work.)

14. (25 points) Verify Stokes' Theorem $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial C} \vec{F} \cdot d \vec{s}$
for the cone $C$ given by $z=2 \sqrt{x^{2}+y^{2}}$ for $z \leq 8$ oriented up and in, and the vector field $\vec{F}=(y z,-x z, z)$.


Be sure to check and explain the orientations. Use the following steps:
a. Note: The cone may be parametrized as $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, 2 r)$

Compute the surface integral by successively finding:

$$
\vec{e}_{r}, \quad \vec{e}_{\theta}, \quad \vec{N}, \quad \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times \vec{F}(\vec{R}(r, \theta)), \quad \iint_{C} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}
$$

Recall: $\quad \vec{F}=(y z,-x z, z)$
b. Compute the line integral by parametrizing the boundary curve and successively finding:
$\vec{r}(\theta), \quad \vec{v}, \quad \vec{F}(\vec{r}(\theta)), \quad \oint_{\partial C} \vec{F} \cdot d \vec{s}$
15. (15 points) A rectangular solid sits on the $x y$-plane with its top four vertices on the paraboloid $z=4-x^{2}-4 y^{2}$. Find the dimensions and volume of the largest such box.


