Name_____MATH 251Paper Homework 1Spring 2008

Section 508 P. Yasskin

Prove the Pythagorean Identity for Vectors:

 $(\vec{u} \cdot \vec{v})^2 + |\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2$

as follows: Consider the vectors $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. Compute each of the following by hand on paper. Show your work. Simplify where possible.

1. Write the algebraic definition for $\vec{u} \cdot \vec{v}$.

 $\vec{u} \cdot \vec{v} =$

2. Write out $(\vec{u} \cdot \vec{v})^2$ to get 6 terms.

$$(\vec{u} \cdot \vec{v})^2 =$$

3. Write the algebraic definition for $\vec{u} \times \vec{v}$.

$$\vec{u} \times \vec{v} =$$

4. Write out $|\vec{u} \times \vec{v}|^2$ to get 9 terms.

$$|\vec{u} \times \vec{v}|^2 =$$

- 5. Add $(\vec{u} \cdot \vec{v})^2 + (\vec{u} \times \vec{v})^2$ and cancel some terms. $(\vec{u} \cdot \vec{v})^2 + |\vec{u} \times \vec{v}|^2 =$
- **6.** Multiply out $|\vec{u}|^2 |\vec{v}|^2$.

$$|\vec{u}|^2 |\vec{v}|^2 =$$

7. Are the answers to (5) and (6) equal?