Name
MATH 251
Paper Homework 2
Spring 2008
Section 508
P. Yasskin

Consider the curve $\vec{r}(t)=\left(e^{t}, \sqrt{2} t, e^{-t}\right)$. Compute each of the following.
Show your work. Simplify where possible.

1. velocity
$\vec{v}(t)=$
2. acceleration $\vec{a}(t)=$
3. jerk $\vec{j}(t)=$
4. speed (HINT: The quantity in the square root is a perfect square.) $|\vec{v}(t)|=$
5. arclength between $(1,0,1)$ and $\left(e, \sqrt{2}, \frac{1}{e}\right)$
$L=$
6. unit tangent vector $\hat{T}=$
7. $\vec{v} \times \vec{a}$
$\vec{v} \times \vec{a}=$
8. $|\vec{v} \times \vec{a}|$
$|\vec{v} \times \vec{a}|=$
9. unit binormal vector $\vec{B}=$
10. unit normal vector
$\vec{N}=$
11. curvature
$\kappa=$
12. torsion
$\tau=$
13. tangential acceleration (compute in 2 ways)
$a_{T}=$
$a_{T}=$
14. normal acceleration (compute in 2 ways)
$a_{N}=$
$a_{N}=$
15. mass of a wire between $(1,0,1)$ and $\left(e, \sqrt{2}, \frac{1}{e}\right)$ with linear density $\rho=x-z$ $M=$
16. work to move a bead along the wire from $(1,0,1)$ to $\left(e, \sqrt{2}, \frac{1}{e}\right)$ with the force $\vec{F}=(z, y, x)$ $\vec{F}(\vec{r}(t))=$
$W=$
