Name \qquad Sec \qquad ID \qquad
MATH 251
Quiz 1
Spring 2008

Total	$/ 25$

Section 508
Solutions
P. Yasskin

Multiple Choice: (5 points each)

1. Find the equation of the sphere which passes through the points $(2,1,3)$ and $(4,5,-1)$.
a. $(x-3)^{2}+(y-3)^{2}+(z-1)^{2}=3$
b. $(x-3)^{2}+(y-3)^{2}+(z-1)^{2}=9 \quad$ Correct Choice
c. $(x+3)^{2}+(y+3)^{2}+(z+1)^{2}=9$
d. $(x-3)^{2}+(y-3)^{2}+(z-1)^{2}=36$
e. $(x+3)^{2}+(y+3)^{2}+(z+1)^{2}=36$

The center is the midpoint: $\quad \vec{C}=\frac{P+Q}{2}=(3,3,1)$
The diameter is the distance: $\quad d(P, Q)=\sqrt{2^{2}+4^{2}+4^{2}}=6$
The radius is half the diameter: $\quad r=3$
The circle is: $\quad(x-3)^{2}+(y-3)^{2}+(z-1)^{2}=9$
2. The angle between the vectors $\vec{u}=(2,-2,4)$ and $\vec{v}=(-1,2,1)$ is
a. acute
b. right
c. obtuse Correct Choice
d. none of these

Since $\vec{u} \cdot \vec{v}=-2-4+4=-2<0$, the angle is obtuse.
3. A wagon is pulled horizontally from the origin $(0,0)$ to the point $(5,0)$ meters by the force $\vec{F}=(4,3)$ Newtons. Find the work done.
a. 20 Joules Correct Choice
b. 15 Joules
c. 25 Joules
d. $5 \sqrt{5}$ Joules
e. $\sqrt{5}$ Joules

The displacement vector is $\vec{D}=(5,0)$. So the work is $W=\vec{F} \cdot \vec{D}=10$ Joules.
4. A triangle has vertices $P=(-1,2,-3), \quad Q=(3,2,1)$, and $R=(-1,-1,0)$. Find the angle at P.
a. 30°
b. 45°
c. 60° Correct Choice
d. 90°
e. 120°

$$
\begin{aligned}
& \overrightarrow{P Q}=Q-P=(4,0,4) \quad \overrightarrow{P R}=R-P=(0,-3,3) \\
& |\overrightarrow{P Q}|=\sqrt{16+16}=4 \sqrt{2} \quad|\overrightarrow{P R}|=\sqrt{9+9}=3 \sqrt{2} \quad \overrightarrow{P Q} \cdot \overrightarrow{P R}=12 \\
& \cos \theta=\frac{12}{4 \sqrt{2} 3 \sqrt{2}}=\frac{1}{2} \quad \theta=60^{\circ} \quad \text { (Use a 30-60-90 triangle.) }
\end{aligned}
$$

5. A triangle has vertices $P=(-1,2,-3), \quad Q=(3,2,1)$, and $R=(-1,-1,0)$. Find the projection of the side $\overrightarrow{P Q}$ onto the base $\overrightarrow{P R}$.
a. $\operatorname{proj}_{\overrightarrow{P R}} \overrightarrow{P Q}=\left(\frac{3}{2}, 0, \frac{3}{2}\right)$
b. $\operatorname{proj}_{\overrightarrow{P R}} \overrightarrow{P Q}=(-1,-1,0)$
c. $\operatorname{proj}_{\overrightarrow{P R}} \overrightarrow{P Q}=\left(-\frac{2}{3},-\frac{2}{3}, 0\right)$
d. $\operatorname{proj}_{\overrightarrow{P R}} \overrightarrow{P Q}=(0,-3,3)$
e. $\operatorname{proj}_{\overrightarrow{P R}} \overrightarrow{P Q}=(0,-2,2) \quad$ Correct Choice
$\overrightarrow{P Q}=Q-P=(4,0,4) \quad \overrightarrow{P R}=R-P=(0,-3,3)$
$|\overrightarrow{P R}|^{2}=9+9=18 \quad \overrightarrow{P Q} \cdot \overrightarrow{P R}=12$
$\operatorname{proj}_{\overrightarrow{P R}} \overrightarrow{P Q}=\frac{\overrightarrow{P Q} \cdot \overrightarrow{P R}}{|\overrightarrow{P R}|^{2}} \overrightarrow{P R}=\frac{12}{18}(0,-3,3)=(0,-2,2)$
