Name \qquad

MATH 251

Exam 1 Version A
Fall 2018
Sections 504/505
Solutions
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$
\vec{F}_{1}=\langle 4,1,-3\rangle \quad \text { and } \quad \vec{F}_{2}=\langle-2,2,1\rangle
$$

If they apply a $3^{\text {rd }}$ tractor beam on the pod, what should its force \vec{F}_{3} be to keep the pod stationary?
a. $\vec{F}_{3}=\langle-2,-3,2\rangle \quad$ Correct Choice
b. $\vec{F}_{3}=\langle-2,3,2\rangle$
c. $\vec{F}_{3}=\langle 2,3,-2\rangle$
d. $\vec{F}_{3}=\langle 2,-3,-2\rangle$
e. $\vec{F}_{3}=\langle 2,3,2\rangle$

Solution: To balance forces, $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=\overrightarrow{0}$. So

$$
\vec{F}_{3}=-\vec{F}_{1}-\vec{F}_{2}=-\langle 4,1,-3\rangle-\langle-2,2,1\rangle=\langle-2,-3,2\rangle
$$

2. The Galactic Federation moves a stasis pod from $(2,3,4)$ to $(6,9,0)$ by applying the 2 forces:

$$
\vec{F}_{1}=\langle 4,1,-3\rangle \quad \text { and } \quad \vec{F}_{2}=\langle-2,2,1\rangle
$$

How much work is done by the force \vec{F}_{1} only?
a. $W=0$
b. $W=10$
c. $W=22$
d. $W=33$
e. $W=34$ Correct Choice

Solution: The displacement is $\vec{D}=(6,9,0)-(2,3,4)=\langle 4,6,-4\rangle$. So the work is

$$
W=\vec{F}_{1} \cdot \vec{D}=16+6+12=34
$$

3. If \vec{u} points Up and \vec{v} points SouthEast, where does $\vec{u} \times \vec{v}$ point?
a. Down
b. NorthEast Correct Choice
c. SouthWest
d. NorthWest
e. South

Solution: Hold your right hand with the fingers pointing Up and the palm facing SouthEast. Then the thumb points NorthEast.
4. Convert the polar equation $r=4 \cos \theta$ to rectangular coordinates and identify the shape of the curve.
a. Circle of radius 4 centered at a point on the x-axis.
b. Circle of radius 4 centered at a point on the y-axis.
c. Circle of radius 2 centered at a point on the x-axis. Correct Choice
d. Circle of radius 2 centered at a point on the y-axis.
e. Parabola opening to the right.

Solution: $r=4 \cos \theta=4 \frac{x}{r} \quad \Rightarrow \quad r^{2}=4 x \quad \Rightarrow \quad x^{2}+y^{2}-4 x=0 \quad \Rightarrow \quad(x-2)^{2}+y^{2}=4$ This is a circle of radius 2 centered at $(2,0)$.
5. Find the angle between the direction of the line $(x, y, z)=(3+3 t, 3-3 t, 4)$ and the normal to the plane $2 x+2 z=15$.
a. 0°
b. 30°
c. 45°
d. 60° Correct Choice
e. 90°

Solution: The tangent to the line is $\vec{v}=\langle 3,-3,0\rangle$. The normal to the plane is $\vec{N}=\langle 2,0,2\rangle$.
So $\cos \theta=\frac{\vec{v} \cdot \vec{N}}{|\vec{v}||\vec{N}|}=\frac{6}{\sqrt{18} \sqrt{8}}=\frac{6}{3 \sqrt{2} 2 \sqrt{2}}=\frac{1}{2} \quad$ and $\quad \theta=60^{\circ}$
6. Find the point where the line $(x, y, z)=\vec{r}(t)=(t+2, t-2,2 t-1)$ intersects the plane $3 x-y+2 z=12$. At this point $x+y+z=$
a. -3
b. -1
c. 0
d. 1
e. 3 Correct Choice

Solution: Plug the line into the plane and solve for t :

$$
3 x-y+2 z=3(t+2)-(t-2)+2(2 t-1)=6 t+6=12 \quad \Rightarrow \quad t=1
$$

So the point is $(x, y, z)=\vec{r}(1)=(3,-1,1)$ and so $x+y+z=3$.
7. The graph of the equation $x^{2}+y^{2}-z=-1$ is a
a. Hyperboloid of 1 sheet
b. Hyperboloid of 2 sheets
c. Cone
d. Elliptic Paraboloid opening up Correct Choice
e. Elliptic Paraboloid opening down

Solution: We write it as $z=1+x^{2}+y^{2}$.
It is an Elliptic Paraboloid because z is to the first power and x^{2} and y^{2} have the same sign. It opens up because $z \geq 1$.
8. Find the equation of the plane thru the point $P=\langle 1,2,3\rangle$ tangent to the vectors $\vec{a}=\langle 1,2,3\rangle$ and $\vec{b}=\langle 3,2,1\rangle$.
a. $-4 x+8 y-4 z=0 \quad$ Correct Choice
b. $-4 x-8 y-4 z=0$
c. $-4 x+8 y-4 z=32$
d. $-4 x-8 y-4 z=32$
e. $-4 x-8 y-4 z=16$

Solution: $\vec{N}=\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right|=\hat{\imath}(2-6)-\hat{\jmath}(1-9)+\hat{k}(2-6)=(-4,8,-4)$

$$
\vec{N} \cdot X=\vec{N} \cdot P \quad-4 x+8 y-4 z=-4(1)+8(2)-4(3)=0
$$

9. Find the area of the triangle with adjacent edges $\vec{a}=\langle 1,2,3\rangle$ and $\vec{b}=\langle 3,2,1\rangle$.
a. $\frac{1}{2} \sqrt{6}$
b. $\sqrt{6}$
c. $2 \sqrt{6}$ Correct Choice
d. $4 \sqrt{6}$
e. $2 \sqrt{2}$

Solution: $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right|=\hat{\imath}(2-6)-\hat{\jmath}(1-9)+\hat{k}(2-6)=(-4,8,-4)$

$$
A=\frac{1}{2}|\vec{a} \times \vec{b}|=\frac{1}{2} \sqrt{16+64+16}=\frac{1}{2} \sqrt{96}=2 \sqrt{6}
$$

10. (36 points) For the twisted cubic $\vec{r}(t)=\left(\frac{t^{3}}{3}, 2 t, t^{2}\right)$ compute each of the following:
a. (6 pts) The velocity \vec{v}

Solution:

$$
\vec{v}=\quad\left\langle t^{2}, 2,2 t\right\rangle
$$

b. (6 pts) The speed $\frac{d s}{d t} \quad$ (Simplify!)

Solution: $\quad \frac{d s}{d t}=|\vec{v}|=\sqrt{t^{4}+4+4 t^{2}}=\sqrt{\left(t^{2}+2\right)^{2}}=t^{2}+2$

$$
\frac{d s}{d t}=\frac{t^{2}+2}{}
$$

c. (6 pts) The tangential acceleration a_{T}

Solution: $\quad a_{T}=\frac{d|\vec{v}|}{d t}=\frac{d}{d t}\left(t^{2}+2\right)=2 t$ \qquad
d. (6 pts) The mass of a wire in the shape of this twisted cubic between ($0,0,0$) and $(9,6,9)$ if the linear mass density is $\delta=y z$.

Solution: $|\vec{v}|=t^{2}+2 \quad \delta=y z=2 t t^{2}=2 t^{3} \quad(0,0,0)=\vec{r}(0) \quad(9,6,9)=\vec{r}(3)$
$M=\int_{(0,0,0)}^{(9,6,9)} \delta d s=\int_{0}^{3} y z|\vec{v}| d t=\int_{0}^{3} 2 t^{3}\left(t^{2}+2\right) d t=\left[\frac{t^{6}}{3}+t^{4}\right]_{0}^{3}=3^{5}+3^{4}=243+81=324$

$$
M=\quad 324
$$

e. (6 pts) The z-component of the center of mass of the wire between $(0,0,0)$ and $(9,6,9)$ if the linear mass density is $\delta=y z$.

Solution: $\quad M_{z}=\int_{(0,0,0)}^{(9,6,9)} z \delta d s=\int_{0}^{3} z y z|\vec{v}| d t=\int_{0}^{3} t^{2} 2 t^{3}\left(t^{2}+2\right) d t=\left[\frac{t^{8}}{4}+\frac{4 t^{6}}{6}\right]_{0}^{3}$

$$
=\frac{3^{8}}{4}+2 \cdot 3^{5}=\frac{3^{5}}{4}\left(3^{3}+8\right)=\frac{3^{5} \cdot 35}{4}
$$

$\bar{z}=\frac{M_{z}}{M}=\frac{3^{5} \cdot 35}{4 \cdot 324}=\frac{105}{16}$ \qquad
f. (6 pts) The work done to move a bead along of a wire in the shape of this twisted cubic between $(0,0,0)$ and $(9,6,9)$ by the force $\vec{F}=(2 y, 3 x, z)$.

Solution: $\vec{F}(\vec{r}(t))=(2 y, 3 x, z)=\left(4 t, t^{3}, t^{2}\right) \quad \vec{v}=\left(t^{2}, 2,2 t\right)$
$\vec{F} \cdot \vec{v}=4 t^{3}+2 t^{3}+2 t^{3}=8 t^{3}$
$W=\int_{(0,0,0)}^{(9,6,9)} \vec{F} \cdot d \vec{s}=\int_{0}^{3} \vec{F} \cdot \vec{v} d t=\int_{0}^{3} 8 t^{3} d t=\left[2 t^{4}\right]_{0}^{3}=2 \cdot 81=162$

$$
W=
$$

\qquad
11. (15 points) Write the vector $\vec{a}=\langle 6,2,2\rangle$ as the sum of two vectors \vec{b} and \vec{c} with \vec{b} parallel to $\vec{d}=\langle 2,1,-1\rangle$ and \vec{c} perpendicular to \vec{d}. Check \vec{c} is perpendicular to \vec{d}.

Solution: $\quad \vec{b}=\operatorname{pro}_{\vec{d}} \vec{a}=\frac{\vec{a} \cdot \vec{d}}{|\vec{d}|^{2}} \vec{d}=\frac{12+2-2}{4+1+1}\langle 2,1,-1\rangle=2\langle 2,1,-1\rangle=\langle 4,2,-2\rangle$

$$
\vec{c}=\vec{a}-\vec{b}=\langle 6,2,2\rangle-\langle 4,2,-2\rangle=\langle 2,0,4\rangle
$$

Check: $\vec{d} \cdot \vec{c}=\langle 2,1,-1\rangle \cdot\langle 2,0,4\rangle=4-4=0$

$$
\vec{a}=\frac{\langle 4,2,-2\rangle}{\vec{b}}+\frac{\langle 2,0,4\rangle}{\vec{c}}
$$

