Name____

MATH 251	Exam 1 Version A	Fall 2018	1-9	/54	11	/16
Sections 504/505	Solutions	P. Yasskin	10	/36	Total	/106
			10	/50	Totai	/100

Multiple Choice: (6 points each. No part credit.)

1. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$\vec{F}_1 = \langle 4, 1, -3 \rangle$$
 and $\vec{F}_2 = \langle -2, 2, 1 \rangle$

If they apply a 3^{rd} tractor beam on the pod, what should its force \vec{F}_3 be to keep the pod stationary?

- **a**. $\vec{F}_3 = \langle -2, -3, 2 \rangle$ Correct Choice
- **b**. $\vec{F}_3 = \langle -2, 3, 2 \rangle$
- **c**. $\vec{F}_3 = \langle 2, 3, -2 \rangle$
- **d**. $\vec{F}_3 = \langle 2, -3, -2 \rangle$

e.
$$\vec{F}_3 = \langle 2, 3, 2 \rangle$$

Solution: To balance forces, $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0}$. So

$$\vec{F}_3 = -\vec{F}_1 - \vec{F}_2 = -\langle 4, 1, -3 \rangle - \langle -2, 2, 1 \rangle = \langle -2, -3, 2 \rangle$$

2. The Galactic Federation moves a stasis pod from (2,3,4) to (6,9,0) by applying the 2 forces: $\vec{F}_1 = \langle 4, 1, -3 \rangle$ and $\vec{F}_2 = \langle -2, 2, 1 \rangle$

How much work is done by the force \vec{F}_1 only?

- **a**. W = 0
- **b**. *W* = 10
- **c**. W = 22
- **d**. W = 33
- **e**. W = 34 Correct Choice

Solution: The displacement is $\vec{D} = (6,9,0) - (2,3,4) = \langle 4,6,-4 \rangle$. So the work is $W = \vec{F}_1 \cdot \vec{D} = 16 + 6 + 12 = 34$

- **3**. If \vec{u} points Up and \vec{v} points SouthEast, where does $\vec{u} \times \vec{v}$ point?
 - a. Down
 - b. NorthEast Correct Choice
 - **c**. SouthWest
 - d. NorthWest
 - e. South

Solution: Hold your right hand with the fingers pointing Up and the palm facing SouthEast. Then the thumb points NorthEast.

- **4**. Convert the polar equation $r = 4\cos\theta$ to rectangular coordinates and identify the shape of the curve.
 - **a**. Circle of radius 4 centered at a point on the *x*-axis.
 - **b**. Circle of radius 4 centered at a point on the *y*-axis.
 - c. Circle of radius 2 centered at a point on the *x*-axis. Correct Choice
 - d. Circle of radius 2 centered at a point on the *y*-axis.
 - e. Parabola opening to the right.

Solution: $r = 4\cos\theta = 4\frac{x}{r} \implies r^2 = 4x \implies x^2 + y^2 - 4x = 0 \implies (x-2)^2 + y^2 = 4$ This is a circle of radius 2 centered at (2,0).

- **5**. Find the angle between the direction of the line (x,y,z) = (3 + 3t, 3 3t, 4) and the normal to the plane 2x + 2z = 15.
 - **a**. 0°
 - **b**. 30°
 - **c**. 45°
 - **d**. 60° Correct Choice
 - $\textbf{e}. \hspace{0.1in} 90^{\circ}$

Solution: The tangent to the line is $\vec{v} = \langle 3, -3, 0 \rangle$. The normal to the plane is $\vec{N} = \langle 2, 0, 2 \rangle$.

So $\cos \theta = \frac{\vec{v} \cdot \vec{N}}{|\vec{v}| |\vec{N}|} = \frac{6}{\sqrt{18}\sqrt{8}} = \frac{6}{3\sqrt{2}2\sqrt{2}} = \frac{1}{2}$ and $\theta = 60^{\circ}$

6. Find the point where the line $(x,y,z) = \vec{r}(t) = (t+2,t-2,2t-1)$ intersects the plane 3x - y + 2z = 12. At this point x + y + z =

- **a**. -3
- **b**. -1
- **c**. 0
- **d**. 1
- e. 3 Correct Choice

Solution: Plug the line into the plane and solve for *t*:

 $3x - y + 2z = 3(t + 2) - (t - 2) + 2(2t - 1) = 6t + 6 = 12 \implies t = 1$ So the point is $(x, y, z) = \vec{r}(1) = (3, -1, 1)$ and so x + y + z = 3.

- 7. The graph of the equation $x^2 + y^2 z = -1$ is a
 - a. Hyperboloid of 1 sheet
 - **b**. Hyperboloid of 2 sheets
 - c. Cone
 - d. Elliptic Paraboloid opening up Correct Choice
 - e. Elliptic Paraboloid opening down

Solution: We write it as $z = 1 + x^2 + y^2$. It is an Elliptic Paraboloid because z is to the first power and x^2 and y^2 have the same sign. It opens up because $z \ge 1$.

8. Find the equation of the plane thru the point $P = \langle 1, 2, 3 \rangle$ tangent to the vectors $\vec{a} = \langle 1, 2, 3 \rangle$ and $\vec{b} = \langle 3, 2, 1 \rangle$.

a. -4x + 8y - 4z = 0 Correct Choice

- **b**. -4x 8y 4z = 0
- **c**. -4x + 8y 4z = 32
- **d**. -4x 8y 4z = 32
- **e**. -4x 8y 4z = 16

Solution: $\vec{N} = \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{vmatrix} = \hat{i}(2-6) - \hat{j}(1-9) + \hat{k}(2-6) = (-4, 8, -4)$

$$\vec{N} \cdot X = \vec{N} \cdot P$$
 $-4x + 8y - 4z = -4(1) + 8(2) - 4(3) = 0$

- **9**. Find the area of the triangle with adjacent edges $\vec{a} = \langle 1, 2, 3 \rangle$ and $\vec{b} = \langle 3, 2, 1 \rangle$.
 - a. $\frac{1}{2}\sqrt{6}$ b. $\sqrt{6}$ c. $2\sqrt{6}$ Correct Choice d. $4\sqrt{6}$ e. $2\sqrt{2}$ Solution: $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{vmatrix} = \hat{i}(2-6) - \hat{j}(1-9) + \hat{k}(2-6) = (-4, 8, -4)$ $A = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{1}{2}\sqrt{16 + 64 + 16} = \frac{1}{2}\sqrt{96} = 2\sqrt{6}$

10. (36 points) For the twisted cubic $\vec{r}(t) = \left(\frac{t^3}{3}, 2t, t^2\right)$ compute each of the following: **a**. (6 pts) The velocity \vec{v}

Solution:

b. (6 pts) The speed $\frac{ds}{dt}$ (Simplify!)

Solution:
$$\frac{ds}{dt} = |\vec{v}| = \sqrt{t^4 + 4 + 4t^2} = \sqrt{(t^2 + 2)^2} = t^2 + 2$$
 $\frac{ds}{dt} = \underline{t^2 + 2}$

c. (6 pts) The tangential acceleration a_T

Solution:
$$a_T = \frac{d|\vec{v}|}{dt} = \frac{d}{dt}(t^2 + 2) = 2t$$
 $a_T = \underline{2t}$

d. (6 pts) The mass of a wire in the shape of this twisted cubic between (0,0,0) and (9,6,9) if the linear mass density is $\delta = yz$.

Solution:
$$|\vec{v}| = t^2 + 2$$
 $\delta = yz = 2tt^2 = 2t^3$ $(0,0,0) = \vec{r}(0)$ $(9,6,9) = \vec{r}(3)$

$$M = \int_{(0,0,0)}^{(9,6,9)} \delta \, ds = \int_0^3 yz \, |\vec{v}| \, dt = \int_0^3 2t^3(t^2 + 2) \, dt = \left[\frac{t^6}{3} + t^4\right]_0^3 = 3^5 + 3^4 = 243 + 81 = 324$$

$$M = 324$$

e. (6 pts) The *z*-component of the center of mass of the wire between (0,0,0) and (9,6,9) if the linear mass density is $\delta = yz$.

Solution:
$$M_z = \int_{(0,0,0)}^{(9,6,9)} z \,\delta \,ds = \int_0^3 zyz \,|\vec{v}| \,dt = \int_0^3 t^2 2t^3 (t^2 + 2) \,dt = \left[\frac{t^8}{4} + \frac{4t^6}{6}\right]_0^3$$

 $= \frac{3^8}{4} + 2 \cdot 3^5 = \frac{3^5}{4} (3^3 + 8) = \frac{3^5 \cdot 35}{4}$
 $\bar{z} = \frac{M_z}{M} = \frac{3^5 \cdot 35}{4 \cdot 324} = \frac{105}{16}$
 $\bar{z} = \frac{105}{16}$

f. (6 pts) The work done to move a bead along of a wire in the shape of this twisted cubic between (0,0,0) and (9,6,9) by the force $\vec{F} = (2y, 3x, z)$.

Solution:
$$\vec{F}(\vec{r}(t)) = (2y, 3x, z) = (4t, t^3, t^2)$$
 $\vec{v} = (t^2, 2, 2t)$
 $\vec{F} \cdot \vec{v} = 4t^3 + 2t^3 + 2t^3 = 8t^3$
 $W = \int_{(0,0,0)}^{(9,6,9)} \vec{F} \cdot d\vec{s} = \int_0^3 \vec{F} \cdot \vec{v} dt = \int_0^3 8t^3 dt = \left[2t^4\right]_0^3 = 2 \cdot 81 = 162$

4

W = <u>162</u>

 $\vec{v} = \langle t^2, 2, 2t \rangle$

11. (15 points) Write the vector $\vec{a} = \langle 6, 2, 2 \rangle$ as the sum of two vectors \vec{b} and \vec{c} with \vec{b} parallel to $\vec{d} = \langle 2, 1, -1 \rangle$ and \vec{c} perpendicular to \vec{d} . Check \vec{c} is perpendicular to \vec{d} .

Solution: $\vec{b} = proj_{\vec{d}}\vec{a} = \frac{\vec{a}\cdot\vec{d}}{|\vec{d}|^2}\vec{d} = \frac{12+2-2}{4+1+1}\langle 2,1,-1\rangle = 2\langle 2,1,-1\rangle = \langle 4,2,-2\rangle$ $\vec{c} = \vec{a} - \vec{b} = \langle 6,2,2\rangle - \langle 4,2,-2\rangle = \langle 2,0,4\rangle$

Check: $\vec{d} \cdot \vec{c} = \langle 2, 1, -1 \rangle \cdot \langle 2, 0, 4 \rangle = 4 - 4 = 0$

$$\vec{a} = \underline{\langle 4, 2, -2 \rangle}_{\vec{b}} + \underline{\langle 2, 0, 4 \rangle}_{\vec{c}}$$