Name \qquad
MATH 251
Exam 1 Version B
Fall 2018
Sections 504/505
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$
\vec{F}_{1}=\langle 4,1,-3\rangle \quad \text { and } \quad \vec{F}_{2}=\langle-2,2,1\rangle
$$

If they apply a $3^{\text {rd }}$ tractor beam on the pod, what should its force \vec{F}_{3} be to keep the pod stationary?
a. $\vec{F}_{3}=\langle 2,3,2\rangle$
b. $\vec{F}_{3}=\langle 2,-3,-2\rangle$
c. $\vec{F}_{3}=\langle 2,3,-2\rangle$
d. $\vec{F}_{3}=\langle-2,3,2\rangle$
e. $\vec{F}_{3}=\langle-2,-3,2\rangle$
2. The Galactic Federation moves a stasis pod from $(2,3,4)$ to $(6,9,0)$ by applying the 2 forces:

$$
\vec{F}_{1}=\langle 4,1,-3\rangle \quad \text { and } \quad \vec{F}_{2}=\langle-2,2,1\rangle
$$

How much work is done by the force \vec{F}_{1} only?
a. $W=10$
b. $W=22$
c. $W=33$
d. $W=34$
e. $W=0$
3. If \vec{u} points Up and \vec{v} points SouthEast, where does $\vec{u} \times \vec{v}$ point?
a. Down
b. NorthWest
c. NorthEast
d. SouthWest
e. South
4. Convert the polar equation $r=4 \cos \theta$ to rectangular coordinates and identify the shape of the curve.
a. Circle of radius 2 centered at a point on the x-axis.
b. Circle of radius 2 centered at a point on the y-axis.
c. Circle of radius 4 centered at a point on the x-axis.
d. Circle of radius 4 centered at a point on the y-axis.
e. Parabola opening to the right.
5. Find the angle between the direction of the line $(x, y, z)=(3+3 t, 3-3 t, 4)$ and the normal to the plane $2 x+2 z=15$.
a. 90°
b. 60°
c. 45°
d. 30°
e. 0°
6. Find the point where the line $(x, y, z)=\vec{r}(t)=(t+2, t-2,2 t-1)$ intersects the plane $3 x-y+2 z=12$. At this point $x+y+z=$
a. 3
b. 1
c. 0
d. -1
e. -3
7. The graph of the equation $x^{2}+y^{2}-z=-1$ is a
a. Hyperboloid of 1 sheet
b. Hyperboloid of 2 sheets
c. Cone
d. Elliptic Paraboloid opening down
e. Elliptic Paraboloid opening up
8. Find the equation of the plane thru the point $P=\langle 1,2,3\rangle$ tangent to the vectors $\vec{a}=\langle 1,2,3\rangle$ and $\vec{b}=\langle 3,2,1\rangle$.
a. $-4 x-8 y-4 z=0$
b. $-4 x+8 y-4 z=0$
c. $-4 x-8 y-4 z=16$
d. $-4 x-8 y-4 z=32$
e. $-4 x+8 y-4 z=32$
9. Find the area of the triangle with adjacent edges $\vec{a}=\langle 1,2,3\rangle$ and $\vec{b}=\langle 3,2,1\rangle$.
a. $2 \sqrt{2}$
b. $4 \sqrt{6}$
c. $2 \sqrt{6}$
d. $\sqrt{6}$
e. $\frac{1}{2} \sqrt{2}$
10. (36 points) For the twisted cubic $\vec{r}(t)=\left(2 t, \frac{t^{3}}{3}, t^{2}\right)$ compute each of the following:
a. (6 pts) The velocity \vec{v}

$$
\vec{v}=
$$

b. (6 pts) The speed $\frac{d s}{d t} \quad$ (Simplify!)

$$
\frac{d s}{d t}=
$$

\qquad
c. (6 pts) The tangential acceleration a_{T}

$$
a_{T}=
$$

\qquad
d. (6 pts) The mass of a wire in the shape of this twisted cubic between (0,0,0) and (6,9,9) if the linear mass density is $\delta=x z$.

$$
M=
$$

e. (6 pts) The z-component of the center of mass of the wire between ($0,0,0$) and $(6,9,9)$ if the linear mass density is $\delta=x z$.

$$
\bar{z}=
$$

f. (6 pts) The work done to move a bead along of a wire in the shape of this twisted cubic between $(0,0,0)$ and $(6,9,9)$ by the force $\vec{F}=(3 y, 4 x, z)$.

$$
W=
$$

11. (15 points) Write the vector $\vec{a}=\langle 2,6,2\rangle$ as the sum of two vectors \vec{b} and \vec{c} with \vec{b} parallel to $\vec{d}=\langle 1,2,-1\rangle$ and \vec{c} perpendicular to \vec{d}. Check \vec{c} is perpendicular to \vec{d}.

