Name_____

MATH 251	Exam 1 Version H	Fall 2018	1-9	/54	11	/16
Sections 200/202		P. Yasskin	10	/36	Total	/106
	/a		10	,00	rotar	, 100

Multiple Choice: (6 points each. No part credit.)

1. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$\vec{F}_1 = \langle 4, 1, -3 \rangle$$
 and $\vec{F}_2 = \langle -2, 2, 1 \rangle$

If they apply a 3^{rd} tractor beam on the pod, what should its force \vec{F}_3 be to keep the pod stationary?

- **a**. $\vec{F}_3 = \langle 2, 3, -2 \rangle$
- **b**. $\vec{F}_3 = \langle 2, -3, -2 \rangle$
- **c**. $\vec{F}_3 = \langle -2, 3, 2 \rangle$
- **d**. $\vec{F}_3 = \langle -2, -3, 2 \rangle$
- **e**. $\vec{F}_3 = \langle 2, 3, 2 \rangle$
- 2. The Galactic Federation moves a stasis pod from (2,3,4) to (6,9,0) by applying the 2 forces: $\vec{F}_1 = \langle 4, 1, -3 \rangle$ and $\vec{F}_2 = \langle -2, 2, 1 \rangle$

How much work is done by the force \vec{F}_1 only?

- **a**. *W* = 34
- **b**. W = 33
- **c**. W = 22
- **d**. W = 10
- **e**. W = 0
- **3**. If a satelite travels from West to East with constant speed in a great circle directly above the Equator of the Earth, where does the unit binormal \hat{B} point?
 - a. North
 - b. South
 - **c**. West
 - **d**. Up
 - e. Down

- **4**. Convert the polar equation $r = \frac{\cos\theta}{\sin^2\theta}$ to rectangular coordinates and identify the shape of the curve.
 - **a**. Circle of radius 4 centered at a point on the *x*-axis.
 - **b**. Circle of radius 4 centered at a point on the *y*-axis.
 - c. Circle of radius 2 centered at a point on the *x*-axis.
 - d. Circle of radius 2 centered at a point on the *y*-axis.
 - e. Parabola opening to the right.

- **5**. Find the angle between the direction of the line (x,y,z) = (3 + t, 3 t, 4) and the normal to the plane 2x y + z = 7.
 - **a**. 0°
 - $\textbf{b}. \ 30^{\circ}$
 - **c**. 45°
 - $\textbf{d}.~~60^{\circ}$
 - $\textbf{e}. 90^{\circ}$

- 6. Find the point where the line $(x,y,z) = \vec{r}(t) = (t+2,t-2,2t-1)$ intersects the plane 3x - y + 2z = 12. At this point x + y + z =
 - **a**. -3
 - **b**. -1
 - **c**. 0
 - **d**. 1
 - **e**. 3

- 7. Is the permutation p = (2, 4, 5, 6, 1, 3) odd or even and find its inverse \bar{p} .
 - **a**. Odd $\bar{p} = (3, 1, 6, 5, 4, 2)$
 - **b**. Odd $\bar{p} = (4, 3, 2, 6, 1, 5)$
 - **c**. Odd $\bar{p} = (5, 1, 6, 2, 3, 4)$
 - **d**. Even $\bar{p} = (4, 3, 2, 6, 1, 5)$
 - **e**. Even $\bar{p} = (5, 1, 6, 2, 3, 4)$

- 8. Find the equation of the hyperplane in \mathbb{R}^4 thru the point P = (1,2,3,5) tangent to the vectors $\vec{a} = \langle 1,0,1,0 \rangle$, $\vec{b} = \langle 0,1,0,1 \rangle$ and $\vec{c} = \langle 1,1,0,0 \rangle$. Let the general point be X = (x,y,z,w). (Show your work. I may give part credit.)
 - **a**. x y z + w = 1
 - **b**. x y z + w = -1
 - **c**. x + y z w = -4
 - **d**. x + y z w = 4
 - **e**. x + y + z + w = 11

- **9**. Find the volume of the parallepiped in \mathbb{R}^4 with adjacent edges
 - $\vec{a} = \langle 1, 0, 1, 0 \rangle$, $\vec{b} = \langle 0, 1, 0, 1 \rangle$ and $\vec{c} = \langle 1, 1, 0, 0 \rangle$. (Show your work. I may give part credit.) **a**. 1
 - _
 - **b**. $\sqrt{2}$
 - **c**. 2
 - **d**. $2\sqrt{2}$
 - **e**. 4

10. (36 points) For the twisted cubic $\vec{r}(t) = \left(\frac{t^3}{3}, t^2, 2t\right)$ compute each of the following: **a**. (6 pts) The velocity \vec{v}

b.	(6 pts) The speed $\frac{ds}{dt}$ (Simplify!)	<i>v</i> =
C.	(6 pts) The tangential acceleration a_T	$\frac{ds}{dt} = _$
d.	(6 pts) The mass of a wire in the shape of this twisted cubic between if the linear mass density is $\delta = yz$.	$a_T =$ (0,0,0) and (9,9,6)
e.	(6 pts) The <i>y</i> -component of the center of mass of the wire between if the linear mass density is $\delta = yz$.	$M = _$ (0,0,0) and (9,9,6)

f. (6 pts) The work done to move a bead along of a wire in the shape of this twisted cubic between (0,0,0) and (9,9,6) by the force $\vec{F} = (z,2y,-3x)$.

W = _____

y = _____

11. (15 points) Write the vector $\vec{a} = \langle 2, 2, 6 \rangle$ as the sum of two vectors \vec{b} and \vec{c} with \vec{b} parallel to $\vec{d} = \langle 1, -1, 2 \rangle$ and \vec{c} perpendicular to \vec{d} . Check \vec{c} is perpendicular to \vec{d} .

