Name \qquad
MATH 251
Exam 1 Version H
Fall 2018
Sections 200/202
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$
\vec{F}_{1}=\langle 4,1,-3\rangle \quad \text { and } \quad \vec{F}_{2}=\langle-2,2,1\rangle
$$

If they apply a $3^{\text {rd }}$ tractor beam on the pod, what should its force \vec{F}_{3} be to keep the pod stationary?
a. $\vec{F}_{3}=\langle 2,3,-2\rangle$
b. $\vec{F}_{3}=\langle 2,-3,-2\rangle$
c. $\vec{F}_{3}=\langle-2,3,2\rangle$
d. $\vec{F}_{3}=\langle-2,-3,2\rangle$
e. $\vec{F}_{3}=\langle 2,3,2\rangle$
2. The Galactic Federation moves a stasis pod from $(2,3,4)$ to $(6,9,0)$ by applying the 2 forces:

$$
\vec{F}_{1}=\langle 4,1,-3\rangle \quad \text { and } \quad \vec{F}_{2}=\langle-2,2,1\rangle
$$

How much work is done by the force \vec{F}_{1} only?
a. $W=34$
b. $W=33$
c. $W=22$
d. $W=10$
e. $W=0$
3. If a satelite travels from West to East with constant speed in a great circle directly above the Equator of the Earth, where does the unit binormal \hat{B} point?
a. North
b. South
c. West
d. Up
e. Down
4. Convert the polar equation $r=\frac{\cos \theta}{\sin ^{2} \theta}$ to rectangular coordinates and identify the shape of the curve.
a. Circle of radius 4 centered at a point on the x-axis.
b. Circle of radius 4 centered at a point on the y-axis.
c. Circle of radius 2 centered at a point on the x-axis.
d. Circle of radius 2 centered at a point on the y-axis.
e. Parabola opening to the right.
5. Find the angle between the direction of the line $(x, y, z)=(3+t, 3-t, 4)$ and the normal to the plane $2 x-y+z=7$.
a. 0°
b. 30°
c. 45°
d. 60°
e. 90°
6. Find the point where the line $(x, y, z)=\vec{r}(t)=(t+2, t-2,2 t-1)$ intersects the plane $3 x-y+2 z=12$. At this point $x+y+z=$
a. -3
b. -1
c. 0
d. 1
e. 3
7. Is the permutation $p=(2,4,5,6,1,3)$ odd or even and find its inverse \bar{p}.
a. Odd $\bar{p}=(3,1,6,5,4,2)$
b. Odd $\bar{p}=(4,3,2,6,1,5)$
c. Odd $\bar{p}=(5,1,6,2,3,4)$
d. Even $\bar{p}=(4,3,2,6,1,5)$
e. Even $\bar{p}=(5,1,6,2,3,4)$
8. Find the equation of the hyperplane in \mathbb{R}^{4} thru the point $P=(1,2,3,5)$ tangent to the vectors $\vec{a}=\langle 1,0,1,0\rangle, \quad \vec{b}=\langle 0,1,0,1\rangle$ and $\vec{c}=\langle 1,1,0,0\rangle$. Let the general point be $X=(x, y, z, w)$. (Show your work. I may give part credit.)
a. $x-y-z+w=1$
b. $x-y-z+w=-1$
c. $x+y-z-w=-4$
d. $x+y-z-w=4$
e. $x+y+z+w=11$
9. Find the volume of the parallepiped in \mathbb{R}^{4} with adjacent edges $\vec{a}=\langle 1,0,1,0\rangle, \vec{b}=\langle 0,1,0,1\rangle$ and $\vec{c}=\langle 1,1,0,0\rangle$. (Show your work. I may give part credit.)
a. 1
b. $\sqrt{2}$
c. 2
d. $2 \sqrt{2}$
e. 4
10. (36 points) For the twisted cubic $\vec{r}(t)=\left(\frac{t^{3}}{3}, t^{2}, 2 t\right)$ compute each of the following:
a. (6 pts) The velocity \vec{v}

$$
\vec{v}=
$$

\qquad
b. (6 pts) The speed $\frac{d s}{d t} \quad$ (Simplify!)

$$
\frac{d s}{d t}=
$$

c. (6 pts) The tangential acceleration a_{T}

$$
a_{T}=
$$

\qquad
d. (6 pts) The mass of a wire in the shape of this twisted cubic between (0,0,0) and (9, 9, 6) if the linear mass density is $\delta=y z$.

$$
M=
$$

\qquad
e. (6 pts) The y-component of the center of mass of the wire between ($0,0,0$) and $(9,9,6)$ if the linear mass density is $\delta=y z$.

$$
\bar{y}=
$$

\qquad
f. (6 pts) The work done to move a bead along of a wire in the shape of this twisted cubic between $(0,0,0)$ and $(9,9,6)$ by the force $\vec{F}=(z, 2 y,-3 x)$.

$$
W=
$$

11. (15 points) Write the vector $\vec{a}=\langle 2,2,6\rangle$ as the sum of two vectors \vec{b} and \vec{c} with \vec{b} parallel to $\vec{d}=\langle 1,-1,2\rangle$ and \vec{c} perpendicular to \vec{d}. Check \vec{c} is perpendicular to \vec{d}.

