Name_____

MATH 251

Exam 2 Version A

Fall 2018

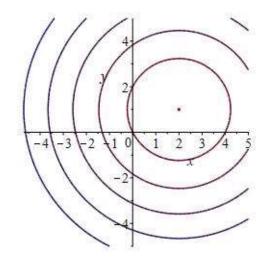
Sections 504/505

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-11	/55	13	/25
12	/20	EC	/5
		Total	/105

1. Which of these functions has the contour plot at the right?


a.
$$x^2 + y^2 + 4x + 2y$$

b.
$$x^2 + y^2 - 4x + 2y$$

$$\mathbf{c}. \quad \sqrt{x^2 + y^2 + 4x - 2y + 1}$$

d.
$$\sqrt{x^2 + y^2 + 4x + 2y + 5}$$

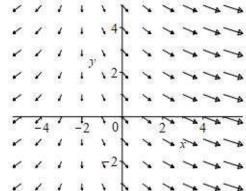
e.
$$\sqrt{x^2 + y^2 - 4x - 2y + 9}$$

2. If $f = x \cos y - y \sin x$ which of the following is INCORRECT?

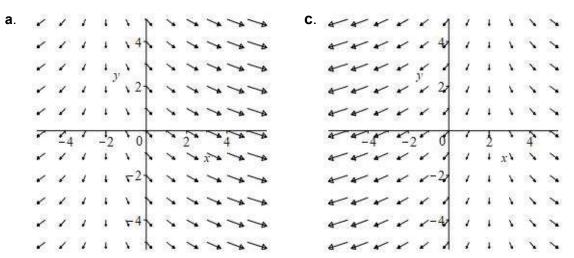
a.
$$\frac{\partial^3 f}{\partial x \partial x \partial x} = y \cos x$$

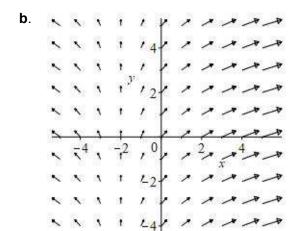
b.
$$\frac{\partial^3 f}{\partial y \partial x \partial x} = \sin x$$

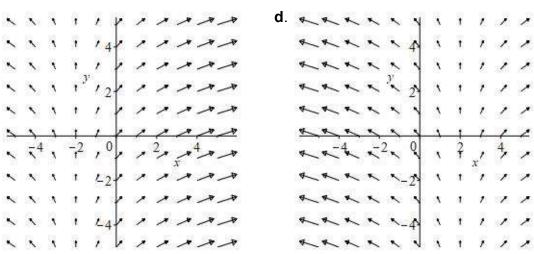
c.
$$\frac{\partial^3 f}{\partial x \partial y \partial x} = \sin x$$


$$\mathbf{d.} \quad \frac{\partial^3 f}{\partial x \partial x \partial y} = -\sin x$$

$$\mathbf{e.} \quad \frac{\partial^3 f}{\partial y \partial y \partial y} = x \sin y$$


- **3**. The partial derivative $\frac{\partial f}{\partial y}\Big|_{(2,3)}$ gives the
 - **a.** slope at y = 3 of the x-trace of f with x fixed at 2.
 - **b.** slope at x = 2 of the x-trace of f with y fixed at 3.
 - **c.** slope at y = 3 of the y-trace of f with x fixed at 2.
 - **d**. slope at x = 2 of the y-trace of f with y fixed at 3.
- **4**. Find the tangent plane to the graph of $z = x^2y^3$ at (x,y) = (2,1). The z-intercept is
 - **a**. −20
 - **b**. -16
 - **c**. 4
 - **d**. 16
 - **e**. 20
- **5**. The equation $x^3z^3 y^2z^2 = -1$ implicitly defines z as a function of x and y. Find $\frac{\partial z}{\partial x}$ at (x,y,z)=(2,3,1).
 - **a**. −2
 - **b**. -1
 - **c**. 0
 - **d**. 1
 - **e**. 2
- **6**. Find the equation of the plane tangent to the surface $x^3z^3 y^2z^2 = -1$ at (x,y,z) = (2,3,1). The *z*-intercept is
 - **a**. c = 12
 - **b**. c = 6
 - **c**. c = 2
 - **d**. c = -2
 - **e**. c = -12


- 7. The strength, S, of a support beam of length L, width W and height H is given by $S = \frac{WH^2}{L}$. Currently, L = 50 cm, W = 5 cm and H = 10 cm. Use the linear approximation to estimate the change in the strength if L increases by 5 cm, W increases by 0.5 cm and H increases by 2 cm.
 - **a**. 10
 - **b**. 8
 - **c**. 6
 - **d**. 4
 - **e**. 2
- **8**. Dark Invader is flying through a dark matter field whose density is given by $\delta = xyz^2$. If Dark's current position is $\vec{r}(2) = \langle 3, 2, 1 \rangle$ and his velocity is $\vec{v}(2) = \langle 1, 2, 1 \rangle$, find the rate at which the density of dark matter is changing as seen by Dark.
 - **a**. $\frac{20}{\sqrt{6}}$
 - **b**. 20
 - **c**. $20\sqrt{6}$
 - **d**. $10\sqrt{6}$
 - **e**. 10
- **9**. When there is no wind, a weather balloon floats in the direction of **decreasing** air density. If the air density is $\delta = x^2 + y^2 + z^3$ and the balloon is located at (x,y,z) = (2,6,1), find the vector direction in which the balloon floats.
 - **a**. $\left\langle \frac{-4}{13}, \frac{-12}{13}, \frac{-3}{13} \right\rangle$
 - **b**. $\left\langle \frac{4}{13}, \frac{12}{13}, \frac{3}{13} \right\rangle$
 - **c**. $\left\langle \frac{-4}{13}, \frac{12}{13}, \frac{-3}{13} \right\rangle$
 - **d**. $\left\langle \frac{4}{13}, \frac{-12}{13}, \frac{3}{13} \right\rangle$


- **10**. Which is the plot of the vector field $\vec{F} = \langle x 2, 2 \rangle$?

2111111111

- **11**. Find a scalar potential, f(x,y,z), for $\vec{F} = \left\langle -\frac{yz}{r^2}, \frac{z}{x}, \frac{y}{x} \right\rangle$. Then f(3,3,3) f(1,1,1) =
 - **a**. 1
 - **b**. 2
 - **c**. 3
 - **d**. 4
 - **e**. 5

Work Out: (Points indicated. Part credit possible. Show all work.)

12. (20 points) Find the point(s), X = (x, y, z), on the hyperboloid $x^2 + y^2 - z^2 = 1$ where the normal vector points in the same direction as $\vec{v} = \langle 1, 4, -4 \rangle$.

13 . (25 points+5 points extra credit) Find the point, $X = (x,y,z)$, on the upper half of the hyperboloi $x^2 + y^2 - z^2 = 1$ which is closest to the point $P = (8,6,0)$. What is the distance?	d		
You may solve by either method. There is 5 points extra credit for solving by both methods.			
Method: Lagrange Multipliers:			

Method: Eliminate the Constraint: