Name \qquad
MATH 251
Exam 2 Version A
Fall 2018
Sections 504/505
Solutions
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-11$	$/ 55$	13	$/ 25$
12	$/ 20$	EC	$/ 5$
		Total	$/ 105$

1. Which of these functions has the contour plot at the right?
a. $x^{2}+y^{2}+4 x+2 y$
b. $x^{2}+y^{2}-4 x+2 y$
c. $\sqrt{x^{2}+y^{2}+4 x-2 y+1}$
d. $\sqrt{x^{2}+y^{2}+4 x+2 y+5}$
e. $\sqrt{x^{2}+y^{2}-4 x-2 y+9}$

Correct Choice

Solution: Completing the square, the functions are
a. $(x+2)^{2}+(y+1)^{2}-5 \quad$ level sets are all circles centered at $(-2,-1)$
b. $(x-2)^{2}+(y+1)^{2}-5 \quad$ level sets are all circles centered at $(2,-1)$
c. $\sqrt{(x+2)^{2}+(y-1)^{2}-4}$ The level sets are circles centered at $(-2,1)$ of radius ≥ 2
d. $\sqrt{(x+2)^{2}+(y+1)^{2}} \quad$ level sets are all circles centered at $(-2,-1)$
e. $\sqrt{(x-2)^{2}+(y-1)^{2}+4}$ level sets are all circles centered at $(2,1) \quad$ Correct
2. If $f=x \cos y-y \sin x$ which of the following is INCORRECT?
a. $\frac{\partial^{3} f}{\partial x \partial x \partial x}=y \cos x$
b. $\frac{\partial^{3} f}{\partial y \partial x \partial x}=\sin x$
c. $\frac{\partial^{3} f}{\partial x \partial y \partial x}=\sin x$
d. $\frac{\partial^{3} f}{\partial x \partial x \partial y}=-\sin x \quad$ Correct Choice
e. $\frac{\partial^{3} f}{\partial y \partial y \partial y}=x \sin y$

Solution: By Clairaut's Theorem, $f_{y x x}=f_{x y x}=f_{x x y}$. Since answer (b) equals answer (c) but not answer (d), answer (d) must be wrong.
3. The partial derivative $\left.\frac{\partial f}{\partial y}\right|_{(2,3)}$ gives the
a. slope at $y=3$ of the x-trace of f with x fixed at 2 .
b. slope at $x=2$ of the x-trace of f with y fixed at 3 .
c. slope at $y=3$ of the y-trace of f with x fixed at 2 . Correct Choice
d. slope at $x=2$ of the y-trace of f with y fixed at 3 .

Solution: An x-trace has y fixed while a y-trace has x fixed.
$\left.\frac{\partial f}{\partial y}\right|_{(2,3)}$ needs x fixed at 2 while we differentiate with respect to y at $y=3$.
4. Find the tangent plane to the graph of $z=x^{2} y^{3}$ at $(x, y)=(2,1)$. The z-intercept is
a. -20
b. -16 Correct Choice
c. 4
d. 16
e. 20

Solution: Let $f(x, y)=x^{2} y^{3}$. The tangent plane is $z=f(2,1)+f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)$.
We compute $f(2,1)=4 \quad f_{x}(x, y)=2 x y^{3} \quad f_{x}(2,1)=4 \quad f_{y}(x, y)=3 x^{2} y^{2} \quad f_{y}(2,1)=12$
So the tangent plane is $z=4+4(x-2)+12(y-1)=4 x+12 y-16$ and the z-intercept is -16 .
5. The equation $x^{3} z^{3}-y^{2} z^{2}=-1$ implicitly defines z as a function of x and y.

Find $\frac{\partial z}{\partial x}$ at $(x, y, z)=(2,3,1)$.
a. -2 Correct Choice
b. -1
c. 0
d. 1
e. 2

Solution: $3 x^{2} z^{3}+x^{3} 3 z^{2} \frac{\partial z}{\partial x}-y^{2} 2 z \frac{\partial z}{\partial x}=0 \quad 12+24 \frac{\partial z}{\partial x}-18 \frac{\partial z}{\partial x}=0 \quad \frac{\partial z}{\partial x}=-2$
6. Find the equation of the plane tangent to the surface $x^{3} z^{3}-y^{2} z^{2}=-1$ at $(x, y, z)=(2,3,1)$. The z-intercept is
a. $c=12$
b. $c=6$
c. $c=2$ Correct Choice
d. $c=-2$
e. $c=-12$

Solution: Let $F=x^{3} z^{3}-y^{2} z^{2}$. Then $\vec{\nabla} F=\left\langle 3 x^{2} z^{3},-2 y z^{2}, 3 x^{3} z^{2}-2 y^{2} z\right\rangle$.
So the normal is $\vec{N}=\left.\vec{\nabla} F\right|_{(2,3,1)}=\langle 12,-6,6\rangle$ and the tangent plane is $\vec{N} \cdot X=\vec{N} \cdot P$ or $12 x-6 y+6 z=12 \cdot 2-6 \cdot 3+6 \cdot 1=12$. So the z-intercept is $c=2$.
7. The strength, S, of a support beam of length L, width W and height H is given by $S=\frac{W H^{2}}{L}$. Currently, $L=50 \mathrm{~cm}, W=5 \mathrm{~cm}$ and $H=10 \mathrm{~cm}$. Use the linear approximation to estimate the change in the strength if L increases by $5 \mathrm{~cm}, W$ increases by 0.5 cm and H increases by 2 cm .
a. 10
b. 8
c. 6
d. 4 Correct Choice
e. 2

Solution: The partial derivatives of S are:

$$
\frac{\partial S}{\partial L}=-\frac{W H^{2}}{L^{2}}=-\frac{5 \cdot 10^{2}}{50^{2}}=-\frac{1}{5} \quad \frac{\partial S}{\partial W}=\frac{H^{2}}{L}=\frac{10^{2}}{50}=2 \quad \frac{\partial S}{\partial H}=\frac{2 W H}{L}=\frac{2 \cdot 5 \cdot 10}{50}=2
$$

The change in strength is approximately its differential:

$$
d S=\frac{\partial S}{\partial L} d L+\frac{\partial S}{\partial W} d W+\frac{\partial S}{\partial H} d H=-\frac{1}{5} \cdot 5+2 \cdot 0.5+2 \cdot 2=4
$$

8. Dark Invader is flying through a dark matter field whose density is given by $\delta=x y z^{2}$. If Dark's current position is $\vec{r}(2)=\langle 3,2,1\rangle$ and his velocity is $\vec{v}(2)=\langle 1,2,1\rangle$, find the rate at which the density of dark matter is changing as seen by Dark.
a. $\frac{20}{\sqrt{6}}$
b. 20 Correct Choice
c. $20 \sqrt{6}$
d. $10 \sqrt{6}$
e. 10

Solution: $\vec{\nabla} \delta=\left.\left\langle y z^{2}, x z^{2}, 2 x y z\right\rangle \quad \vec{\nabla} \delta\right|_{(3,2,1)}=\langle 2,3,12\rangle \quad \frac{d \delta}{d t}=\vec{v} \cdot \vec{\nabla} \delta=2+6+12=20$
9. When there is no wind, a weather balloon floats in the direction of decreasing air density. If the air density is $\delta=x^{2}+y^{2}+z^{3}$ and the balloon is located at $(x, y, z)=(2,6,1)$, find the vector direction in which the balloon floats.
a. $\left\langle\frac{-4}{13}, \frac{-12}{13}, \frac{-3}{13}\right\rangle \quad$ Correct Choice
b. $\left\langle\frac{4}{13}, \frac{12}{13}, \frac{3}{13}\right\rangle$
c. $\left\langle\frac{-4}{13}, \frac{12}{13}, \frac{-3}{13}\right\rangle$
d. $\left\langle\frac{4}{13}, \frac{-12}{13}, \frac{3}{13}\right\rangle$

Solution: $\vec{\nabla} \delta=\left.\left\langle 2 x, 2 y, 3 z^{2}\right\rangle \quad \vec{\nabla} \delta\right|_{(2,6,1)}=\langle 4,12,3\rangle \quad|\vec{\nabla} \delta|=\sqrt{16+144+9}=13$
The density decreases in the direction $\hat{u}=\frac{-\vec{\nabla} \delta}{|\vec{\nabla} \delta|}=\left\langle\frac{-4}{13}, \frac{-12}{13}, \frac{-3}{13}\right\rangle$.
10. Which is the plot of the vector field $\vec{F}=\langle x-2,2\rangle$?
a.

c.

b.

d.

Correct Choice

Solution: The y-coordinate is 2 . So the vector field points up. The x-coordinate is $x-2$. So the x coordinate is 0 when $x=2$. That is plot (d).
11. Find a scalar potential, $f(x, y, z)$, for $\vec{F}=\left\langle-\frac{y z}{x^{2}}, \frac{z}{x}, \frac{y}{x}\right\rangle$. Then $f(3,3,3)-f(1,1,1)=$
a. 1
b. 2

Correct Choice
c. 3
d. 4
e. 5

Solution: $\vec{\nabla} f-\vec{F} \quad \partial_{x} f=-\frac{y z}{x^{2}}, \quad \partial_{y} f=\frac{z}{x}, \quad \partial_{z} f=\frac{y}{x} \quad f=\frac{y z}{x} \quad f(3,3,3)-f(1,1,1)=3-1=2$

Work Out: (Points indicated. Part credit possible. Show all work.)
12. (20 points) Find the point(s), $X=(x, y, z)$, on the hyperboloid $x^{2}+y^{2}-z^{2}=1$ where the normal vector points in the same direction as $\vec{v}=\langle 1,4,-4\rangle$.

Solution: Let $F=x^{2}+y^{2}-z^{2}$. Then the normal is $\vec{N}=\vec{\nabla} F=\langle 2 x, 2 y,-2 z\rangle$. The normal is in the same direction as \vec{v} if $\vec{N}=\lambda \vec{v}$, i.e.

$$
2 x=\lambda \quad 2 y=\lambda 4 \quad-2 z=-\lambda 4
$$

Since $\lambda=2 x$, we have $2 y=8 x$ and $-2 z=-8 x$ or $y=4 x$ and $z=4 x$. We substitute these into the equation of the hyperboloid:

$$
1=x^{2}+y^{2}-z^{2}=x^{2}+16 x^{2}-16 x^{2}=x^{2} \quad \Rightarrow \quad x= \pm 1
$$

So the points are

$$
(x, y, z)=(1,4,4) \quad \text { and } \quad(x, y, z)=(-1,-4,-4)
$$

13. (25 points +5 points extra credit) Find the point, $X=(x, y, z)$, on the upper half of the hyperboloid $x^{2}+y^{2}-z^{2}=1$ which is closest to the point $P=(8,6,0)$. What is the distance?

You may solve by either method. There is 5 points extra credit for solving by both methods.
Solution: We are minimizing the distance from P to X, or the square of the distance:

$$
f=(x-8)^{2}+(y-6)^{2}+z^{2}
$$

subject to the constraint:

$$
g=x^{2}+y^{2}-z^{2}=1
$$

Method: Lagrange Multipliers:

We compute the gradients:

$$
\vec{\nabla} f=\langle 2(x-8), 2(y-6), 2 z\rangle \quad \vec{\nabla} g=\langle 2 x, 2 y,-2 z\rangle
$$

So the Lagrange equations are:

$$
2(x-8)=2 x \lambda \quad 2(y-6)=2 y \lambda \quad 2 z=-2 z \lambda
$$

The z equation gives $\lambda=-1$. Then the x and y equations give:

$$
x-8=-x \quad y-6=-y
$$

or $x=4$ and $y=3$. Substituting into the constraint gives

$$
z^{2}=x^{2}+y^{2}-1=16+9-1=24 \quad z=\sqrt{24}=2 \sqrt{6}
$$

Method: Eliminate the Constraint:

We solve the constraint for $z^{2}=x^{2}+y^{2}-1$ and substitute into the square of the distance:

$$
f=(x-8)^{2}+(y-6)^{2}+x^{2}+y^{2}-1
$$

We set the derivatives equal to 0 and solve:

$$
\begin{array}{lll}
f_{x}=2(x-8)+2 x=0 & \Rightarrow & x=4 \\
f_{y}=2(y-6)+2 y=0 & \Rightarrow & y=3
\end{array}
$$

We substitute back to get

$$
z=\sqrt{x^{2}+y^{2}-1}=\sqrt{16+9-1}=\sqrt{24}=2 \sqrt{6}
$$

The point is $(4,3,2 \sqrt{6})$ and the distance is

$$
D=\sqrt{f}=\sqrt{(x-8)^{2}+(y-6)^{2}+z^{2}}=\sqrt{16+9+24}=7
$$

