MATH 251Exam 2 Version AFall 2018Sections 504/505SolutionsP. YasskinMultiple Choice: (5 points each. No part credit.)

1. Which of these functions has the contour plot at the right?

a.
$$x^2 + y^2 + 4x + 2y$$

Name_____

b.
$$x^2 + y^2 - 4x + 2y$$

c.
$$\sqrt{x^2 + y^2 + 4x - 2y + 1}$$

d.
$$\sqrt{x^2 + y^2 + 4x + 2y + 5}$$

e. $\sqrt{x^2 + y^2 - 4x - 2y + 9}$ Correct Choice

 1-11
 /55
 13
 /25

 12
 /20
 EC
 /5

 Total
 /105

Solution: Completing the square, the functions are

a. $(x + 2)^2 + (y + 1)^2 - 5$ level sets are all circles centered at (-2, -1)b. $(x - 2)^2 + (y + 1)^2 - 5$ level sets are all circles centered at (2, -1)c. $\sqrt{(x + 2)^2 + (y - 1)^2 - 4}$ The level sets are circles centered at (-2, 1) of radius ≥ 2 d. $\sqrt{(x + 2)^2 + (y + 1)^2}$ level sets are all circles centered at (-2, -1)e. $\sqrt{(x - 2)^2 + (y - 1)^2 + 4}$ level sets are all circles centered at (2, 1) Correct

2. If $f = x \cos y - y \sin x$ which of the following is INCORRECT?

a.
$$\frac{\partial^3 f}{\partial x \partial x \partial x} = y \cos x$$

b.
$$\frac{\partial^3 f}{\partial y \partial x \partial x} = \sin x$$

c.
$$\frac{\partial^3 f}{\partial x \partial y \partial x} = \sin x$$

d.
$$\frac{\partial^3 f}{\partial x \partial x \partial y} = -\sin x$$
 Correct Choice
e.
$$\frac{\partial^3 f}{\partial y \partial y \partial y} = x \sin y$$

Solution: By Clairaut's Theorem, $f_{yxx} = f_{xyx} = f_{xxy}$. Since answer (b) equals answer (c) but not answer (d), answer (d) must be wrong.

3. The partial derivative $\frac{\partial f}{\partial y}\Big|_{(2,3)}$ gives the **a**. slope at y = 3 of the x-trace of f with x fixed at 2. **b**. slope at x = 2 of the x-trace of f with y fixed at 3. **c**. slope at y = 3 of the y-trace of f with x fixed at 2. **Correct Choice d**. slope at x = 2 of the *y*-trace of *f* with *y* fixed at 3. **Solution**: An *x*-trace has *y* fixed while a *y*-trace has *x* fixed. $\frac{\partial f}{\partial y}\Big|_{(2,3)}$ needs x fixed at 2 while we differentiate with respect to y at y = 3. **4**. Find the tangent plane to the graph of $z = x^2y^3$ at (x, y) = (2, 1). The *z*-intercept is **a**. -20 **b**. -16 **Correct Choice c**. 4 **d**. 16 **e**. 20 **Solution**: Let $f(x,y) = x^2y^3$. The tangent plane is $z = f(2,1) + f_x(2,1)(x-2) + f_y(2,1)(y-1)$. We compute f(2,1) = 4 $f_x(x,y) = 2xy^3$ $f_x(2,1) = 4$ $f_y(x,y) = 3x^2y^2$ $f_y(2,1) = 12$ So the tangent plane is z = 4 + 4(x-2) + 12(y-1) = 4x + 12y - 16 and the *z*-intercept is -16. 5. The equation $x^3z^3 - y^2z^2 = -1$ implicitly defines z as a function of x and y. Find $\frac{\partial z}{\partial x}$ at (x, y, z) = (2, 3, 1). **Correct Choice a**. -2 **b**. -1 **c**. 0 **d**. 1 **e**. 2 **Solution**: $3x^2z^3 + x^33z^2\frac{\partial z}{\partial x} - y^22z\frac{\partial z}{\partial x} = 0$ $12 + 24\frac{\partial z}{\partial x} - 18\frac{\partial z}{\partial x} = 0$ $\frac{\partial z}{\partial x} = -2$ **6**. Find the equation of the plane tangent to the surface $x^3z^3 - y^2z^2 = -1$ at (x, y, z) = (2, 3, 1). The *z*-intercept is **a**. *c* = 12 **b**. c = 6**c**. *c* = 2 **Correct Choice d**. c = -2**e**. c = -12**Solution**: Let $F = x^3 z^3 - y^2 z^2$. Then $\vec{\nabla} F = \langle 3x^2 z^3, -2yz^2, 3x^3 z^2 - 2y^2 z \rangle$. So the normal is $\vec{N} = \vec{\nabla}F \Big|_{(2,3,1)} = \langle 12, -6, 6 \rangle$ and the tangent plane is $\vec{N} \cdot X = \vec{N} \cdot P$ or

 $12x - 6y + 6z = 12 \cdot 2 - 6 \cdot 3 + 6 \cdot 1 = 12$. So the *z*-intercept is c = 2.

- 7. The strength, *S*, of a support beam of length *L*, width *W* and height *H* is given by $S = \frac{WH^2}{L}$. Currently, L = 50 cm, W = 5 cm and H = 10 cm. Use the linear approximation to estimate the change in the strength if *L* increases by 5 cm, *W* increases by 0.5 cm and *H* increases by 2 cm.
 - **a**. 10
 - **b**. 8
 - **c**. 6
 - d. 4 Correct Choice

e. 2

Solution: The partial derivatives of *S* are:

 $\frac{\partial S}{\partial L} = -\frac{WH^2}{L^2} = -\frac{5 \cdot 10^2}{50^2} = -\frac{1}{5} \qquad \frac{\partial S}{\partial W} = \frac{H^2}{L} = \frac{10^2}{50} = 2 \qquad \frac{\partial S}{\partial H} = \frac{2WH}{L} = \frac{2 \cdot 5 \cdot 10}{50} = 2$

The change in strength is approximately its differential:

$$dS = \frac{\partial S}{\partial L}dL + \frac{\partial S}{\partial W}dW + \frac{\partial S}{\partial H}dH = -\frac{1}{5} \cdot 5 + 2 \cdot 0.5 + 2 \cdot 2 = 4$$

- 8. Dark Invader is flying through a dark matter field whose density is given by $\delta = xyz^2$. If Dark's current position is $\vec{r}(2) = \langle 3, 2, 1 \rangle$ and his velocity is $\vec{v}(2) = \langle 1, 2, 1 \rangle$, find the rate at which the density of dark matter is changing as seen by Dark.
 - **a**. $\frac{20}{\sqrt{6}}$
 - **b**. 20 Correct Choice
 - **c**. $20\sqrt{6}$
 - **d**. $10\sqrt{6}$
 - **e**. 10

Solution:
$$\vec{\nabla}\delta = \langle yz^2, xz^2, 2xyz \rangle$$
 $\vec{\nabla}\delta \Big|_{(3,2,1)} = \langle 2, 3, 12 \rangle$ $\frac{d\delta}{dt} = \vec{v} \cdot \vec{\nabla}\delta = 2 + 6 + 12 = 20$

9. When there is no wind, a weather balloon floats in the direction of **decreasing** air density. If the air density is $\delta = x^2 + y^2 + z^3$ and the balloon is located at (x, y, z) = (2, 6, 1), find the vector direction in which the balloon floats.

a.
$$\left\langle \frac{-4}{13}, \frac{-12}{13}, \frac{-3}{13} \right\rangle$$
 Correct Choice
b. $\left\langle \frac{4}{13}, \frac{12}{13}, \frac{3}{13} \right\rangle$
c. $\left\langle \frac{-4}{13}, \frac{12}{13}, \frac{-3}{13} \right\rangle$
d. $\left\langle \frac{4}{13}, \frac{-12}{13}, \frac{3}{13} \right\rangle$
Solution: $\vec{\nabla}\delta = \langle 2x, 2y, 3z^2 \rangle$ $\vec{\nabla}\delta \Big|_{(2,6,1)} = \langle 4, 12, 3 \rangle$ $\left| \vec{\nabla}\delta \right| = \sqrt{16 + 144 + 9} = 13$
The density **decreases** in the direction $\hat{u} = \frac{-\vec{\nabla}\delta}{\left| \vec{\nabla}\delta \right|} = \left\langle \frac{-4}{13}, \frac{-12}{13}, \frac{-3}{13} \right\rangle$.

10. Which is the plot of the vector field $\vec{F} = \langle x - 2, 2 \rangle$?

a .	1	1	1	4	¥.	1	1	>	4	A	-	С.	*	*	*	1	1	1	1	4	A.	1	$\mathbf{}$
	1	1	1		٧4	ŀ	1	1	4	1	-		*	*	*	~	~	4	1	1	\$	١	`
	1	1	1	۰,	۸.	ŀ	`	1	1	-	-		4	*	*	~	1	1	1	1	Υ.	١.	`
		1	1	+	٧2	k	`	>	~	-	-		4	*	*	~	1	2	1	1	x	١	`
	1	1	1	1	×.	k	`	`	1	-			4	*	*	~	1	1	1	4	١	Ň	`
	~	<u>-4</u>	1	-2	۰ ₀	•	~	2	~	4	4		4	4	4	Y	2	đ	1	2	1	4	~
	1	1	1	+	¥	•	>	>	x a	-	-		4	4	~	~	1	1	X	ŧ	<i>x.1</i>	1	1
	1	1	1	ł	v 2	k	`	1	~	-	-		*	*	~	1	1	2	1	4	v	1	~
	1	1	1	4	x	•	1	>	4	4	-		*	*	*	~	1	1	1	1	Ň	1	`
	~	1	1	4	۳4	1	5	`	*	Y	-		4	*	*	~	1	-4/	1	1		1	`
	1	1	1	1	x	Ł	`	`	~	-	-		4-	*	*	~	1	٢	1	1	۷	•	`
b.	~	ς.	\$,	,	r	,	,*	_*	->	->	d.	*	A.	*	. ~	~	Ν	١	1	,	,	,
	~	Ν.	٩	1	14	ł	1	,	1	_*	~		4	*	. *	. ~	~	4	3	t	1	1	1
	~	\$	۸	1	1	1	~	1	>	->	->		*	*	. *	~	~	1	١	1	1	,	,
	~	1	3	۰ ³	12	ł	1	1	1	-*	->		*	*	. *	~	Y.	2	١	1	1	1	1
	~	1	١	,	1	k	1	^	~	_>	-10		*	*	~	•	~	1	1	1	1	1	1
	4	1	1	4	1	1	1	1	~	10	~		*	*	R	~	~	-	1	1	1	1	~
	~	₹4	1	- ₁ 2	, ⁰	1	,	2,	1	4_0	->		*	*	4	. ~	2	Q	x	7	1	4,	,
	~	N	3	1	42	ŀ	1	,	1	~	->		4	R.	*	~	•	-2	X	t	٠,	1	,
	~	1	3	a.	1	k	1	,	1	~	~		4	A	*	~	~	~	3	æ	1	,	/
	~	x	\$	•	4	1	1	,	~	_>	->		*	*	.*	. ~	1	-4	x	t	,	,	1
	~	N	\$	1	,	1	1	^	1	1	->		*	*	. *	. 、	~	1	٩	t	,	,	,
													Correct Choice										

Solution: The *y*-coordinate is 2. So the vector field points up. The *x*-coordinate is x - 2. So the *x* coordinate is 0 when x = 2. That is plot (d).

11. Find a scalar potential,
$$f(x,y,z)$$
, for $\vec{F} = \left\langle -\frac{yz}{x^2}, \frac{z}{x}, \frac{y}{x} \right\rangle$. Then $f(3,3,3) - f(1,1,1) =$

- **a**. 1
- b. 2 Correct Choice
- **c**. 3
- **d**. 4
- **e**. 5

Solution: $\vec{\nabla}f - \vec{F}$ $\partial_x f = -\frac{yz}{x^2}$, $\partial_y f = \frac{z}{x}$, $\partial_z f = \frac{y}{x}$ $f = \frac{yz}{x}$ f(3,3,3) - f(1,1,1) = 3 - 1 = 2

12. (20 points) Find the point(s), X = (x, y, z), on the hyperboloid $x^2 + y^2 - z^2 = 1$ where the normal vector points in the same direction as $\vec{v} = \langle 1, 4, -4 \rangle$.

Solution: Let $F = x^2 + y^2 - z^2$. Then the normal is $\vec{N} = \vec{\nabla}F = \langle 2x, 2y, -2z \rangle$. The normal is in the same direction as \vec{v} if $\vec{N} = \lambda \vec{v}$, i.e.

$$2x = \lambda$$
 $2y = \lambda 4$ $-2z = -\lambda 4$

Since $\lambda = 2x$, we have 2y = 8x and -2z = -8x or y = 4x and z = 4x. We substitute these into the equation of the hyperboloid:

$$1 = x^{2} + y^{2} - z^{2} = x^{2} + 16x^{2} - 16x^{2} = x^{2} \implies x = \pm 1$$

So the points are

$$(x,y,z) = (1,4,4)$$
 and $(x,y,z) = (-1,-4,-4)$

13. (25 points+5 points extra credit) Find the point, X = (x, y, z), on the upper half of the hyperboloid $x^2 + y^2 - z^2 = 1$ which is closest to the point P = (8, 6, 0). What is the distance?

You may solve by either method. There is 5 points extra credit for solving by both methods.

Solution: We are minimizing the distance from *P* to *X*, or the square of the distance: $f = (x - 8)^{2} + (y - 6)^{2} + z^{2}$

subject to the constraint:

$$g = x^2 + y^2 - z^2 = 1$$

Method: Lagrange Multipliers:

We compute the gradients:

So

or

$$\overline{\nabla}f = \langle 2(x-8), 2(y-6), 2z \rangle \qquad \overline{\nabla}g = \langle 2x, 2y, -2z \rangle$$

So the Lagrange equations are:
$$2(x-8) = 2x\lambda \qquad 2(y-6) = 2y\lambda \qquad 2z = -2z\lambda$$

The *z* equation gives $\lambda = -1$. Then the *x* and *y* equations give:
$$x-8 = -x \qquad y-6 = -y$$

or $x = 4$ and $y = 3$. Substituting into the constraint gives
$$z^2 = x^2 + y^2 - 1 = 16 + 9 - 1 = 24 \qquad z = \sqrt{24} = 2\sqrt{6}$$

Method: Eliminate the Constraint:

We solve the constraint for $z^2 = x^2 + y^2 - 1$ and substitute into the square of the distance: $f = (x-8)^{2} + (y-6)^{2} + x^{2} + y^{2} - 1$

We set the derivatives equal to 0 and solve:

$$f_x = 2(x - 8) + 2x = 0 \implies x = 4$$

$$f_y = 2(y - 6) + 2y = 0 \implies y = 3$$

We substitute back to get

$$z = \sqrt{x^2 + y^2 - 1} = \sqrt{16 + 9 - 1} = \sqrt{24} = 2\sqrt{6}$$

.....

The point is $(4,3,2\sqrt{6})$ and the distance is

$$D = \sqrt{f} = \sqrt{(x-8)^2 + (y-6)^2 + z^2} = \sqrt{16 + 9 + 24} = 7$$