Name____

MATH 251

Sections 504/505

Exam 2 Version B

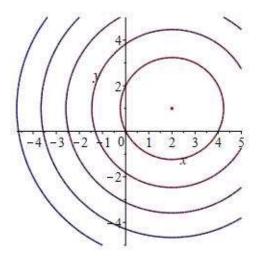
Fall 2018 P. Yasskin

1-11	/55	13	/25
12	/20	EC	/5
		Total	/105

Multiple Choice: (5 points each. No part credit.)

- 1. Which of these functions has the contour plot at the right?
 - a. $\sqrt{x^2 + y^2 4x 2y + 9}$ b. $\sqrt{x^2 + y^2 + 4x + 2y + 5}$ c. $\sqrt{x^2 + y^2 + 4x - 2y + 1}$ d. $x^2 + y^2 - 4x + 2y$

e.
$$x^2 + y^2 + 4x + 2y$$



2. If $f = x \cos y - y \sin x$ which of the following is INCORRECT?

a.
$$\frac{\partial^3 f}{\partial x \partial x \partial x} = y \cos x$$

b.
$$\frac{\partial^3 f}{\partial y \partial x \partial x} = \sin x$$

c.
$$\frac{\partial^3 f}{\partial x \partial y \partial x} = -\sin x$$

d.
$$\frac{\partial^3 f}{\partial x \partial x \partial y} = \sin x$$

$$\frac{\partial^3 f}{\partial x \partial x \partial y} = \sin x$$

$$e. \quad \frac{\partial^2 J}{\partial y \partial y \partial y} = x \sin y$$

3. The partial derivative $\frac{\partial f}{\partial x}\Big|_{(2,3)}$ gives the

a. slope at y = 3 of the *x*-trace of *f* with *x* fixed at 2.

b. slope at x = 2 of the *x*-trace of *f* with *y* fixed at 3.

c. slope at y = 3 of the *y*-trace of *f* with *x* fixed at 2.

d. slope at x = 2 of the *y*-trace of *f* with *y* fixed at 3.

- **4**. Find the tangent plane to the graph of $z = x^2y^3$ at (x,y) = (2,1). The *z*-intercept is
 - **a**. 20
 - **b**. 16
 - **c**. 4
 - **d**. -16
 - **e**. -20

5. The equation $x^3z^3 - y^2z^2 = -1$ implicitly defines z as a function of x and y. Find $\frac{\partial z}{\partial y}$ at (x,y,z) = (2,3,1).

- **a**. 2
- **b**. 1
- **c**. 0
- $\boldsymbol{\mathsf{d}}.~-1$
- **e**. −2

6. Find the equation of the plane tangent to the surface $x^3z^3 - y^2z^2 = -1$ at (x,y,z) = (2,3,1). The *z*-intercept is

- **a**. *c* = −12
- **b**. c = -2
- **c**. *c* = 2
- **d**. *c* = 6
- **e**. *c* = 12

- 7. The strength, *S*, of a support beam of length *L*, width *W* and height *H* is given by $S = \frac{WH^2}{L}$. Currently, L = 50 cm, W = 5 cm and H = 10 cm. Use the linear approximation to estimate the change in the strength if *L* increases by 5 cm, *W* increases by 0.5 cm and *H* increases by 1 cm?
 - **a**. 10
 - **b**. 8
 - **c**. 6
 - **d**. 4
 - **e**. 2
- 8. Dark Invader is flying through a dark matter field whose density is given by $\delta = xyz^2$. If Dark's current position is $\vec{r}(2) = \langle 3, 2, 1 \rangle$ and his velocity is $\vec{v}(2) = \langle 1, 2, 1 \rangle$, find the rate at which the density of dark matter is changing as seen by Dark.
 - **a**. 10
 - **b**. $10\sqrt{6}$
 - **c**. $20\sqrt{6}$
 - **d**. 20
 - **e**. $\frac{20}{\sqrt{6}}$
- **9**. When there is no wind, a weather balloon floats in the direction of **decreasing** air density. If the air density is $\delta = x^2 + y^2 + z^3$ and the balloon is located at (x, y, z) = (2, 6, 1), find the vector direction in which the balloon floats.
 - **a.** $\left\langle \frac{4}{13}, \frac{12}{13}, \frac{3}{13} \right\rangle$ **b.** $\left\langle \frac{-4}{13}, \frac{12}{13}, \frac{-3}{13} \right\rangle$ **c.** $\left\langle \frac{-4}{13}, \frac{-12}{13}, \frac{-3}{13} \right\rangle$ **d.** $\left\langle \frac{4}{13}, \frac{-12}{13}, \frac{3}{13} \right\rangle$

- **10**. Which is the plot of the vector field $\vec{F} = \langle x 2, -2 \rangle$?
 - a. $(x_{1}, x_{2}, y_{1}, y_{1}, y_{1}, y_{2}, y_{2}, y_{2}, y_{2}, y_{2}, y_{1}, y_{2}, y_{2}, y_{2}, y_{2}, y_{2}, y_{2}, y_{1}, y_{2}, y_{2}, y_{2}, y_{2}, y_{1}, y_{2}, y_{2}, y_{2}, y_{1}, y_{2}, y_{$

11. Find a scalar potential, f(x,y,z), for $\vec{F} = \left\langle -\frac{yz}{x^2}, \frac{z}{x}, \frac{y}{x} \right\rangle$. Then f(4,4,4) - f(1,1,1) =

- **a**. 1
- **b**. 2
- **c**. 3
- **d**. 4
- **e**. 5

Work Out: (Points indicated. Part credit possible. Show all work.)

12. (20 points) Find the point(s), X = (x, y, z), on the hyperboloid $x^2 + y^2 - z^2 = 1$ where the normal vector points in the same direction as $\vec{v} = \langle 1, 3, -3 \rangle$.

13. (25 points+5 points extra credit) Find the point, X = (x, y, z), on the upper half of the hyperboloid $x^2 + y^2 - z^2 = 1$ which is closest to the point P = (6, 8, 0). What is the distance?

You may solve by either method. There is 5 points extra credit for solving by both methods.

Method: Lagrange Multipliers::

Method: Eliminate the Constraint: