Name_

MATH 251 Exam 2 Version H Sections 200/202 Fall 2018 P. Yasskin

1-11	/55	13	/25
12	/20	EC	/5
		Total	/105

Multiple Choice: (5 points each. No part credit.)

- 1. Which of these functions has the contour plot at the right?
 - a. $\sqrt{x^2 + y^2 + 4x 2y + 1}$ b. $\sqrt{x^2 + y^2 + 4x + 2y + 5}$ c. $\sqrt{x^2 + y^2 - 4x - 2y + 9}$ d. $x^2 + y^2 - 4x + 2y$

e.
$$x^2 + y^2 + 4x + 2y$$

- **2**. If $\vec{F} = \langle 2xyz, -3y^2z, 2yz^2 \rangle$, which of the following is FALSE?
 - **a**. $\vec{\nabla} \cdot \vec{F} = 0$
 - **b**. $\vec{\nabla} \times \vec{F} = \langle 2z^2 + 3y^2, 2xy, -2xz \rangle$
 - **c**. \vec{F} has a vector potential.
 - **d**. \vec{F} has a scalar potential.

3. The partial derivative \$\frac{\partial f}{\partial x}\$ | gives the gives the \$\frac{1}{2,3}\$ gives the \$\frac{1}{2,3}\$ gives the \$\frac{1}{2,3}\$ gives the \$x\$-trace of \$f\$ with \$x\$ fixed at \$2\$.
b. slope at \$x = 2\$ of the \$x\$-trace of \$f\$ with \$y\$ fixed at \$3\$.
c. slope at \$y = 3\$ of the \$y\$-trace of \$f\$ with \$x\$ fixed at \$2\$.
d. slope at \$x = 2\$ of the \$y\$-trace of \$f\$ with \$y\$ fixed at \$3\$.

- **4**. Find the tangent plane to the graph of $z = x^2y^3$ at (x,y) = (2,1). The *z*-intercept is
 - **a**. -16
 - **b**. 16
 - **c**. 4
 - **d**. -20
 - **e**. 20
- 5. The equation $x^3z^3 y^2z^2 = -1$ implicitly defines z as a function of x and y. Find $\frac{\partial z}{\partial x}$ at (x,y,z) = (2,3,1). a. 2 b. 1
 - **9**. 1
 - **c**. 0
 - **d**. −1
 - **e**. −2
- **6**. Find the equation of the line perpendicular to the surface $x^3z^3 y^2z^2 = -1$ at (x,y,z) = (2,3,1). It intersects the *xy*-plane at
 - **a**. (0,4,0)
 - **b**. (-2, 5, 0)
 - **c**. (-4, 6, 0)
 - **d**. (4,2,0)
 - **e**. (8,0,0)

- 7. The strength, *S*, of a support beam of length *L*, width *W* and height *H* is given by $S = \frac{WH^2}{L}$. Currently, L = 50 cm, W = 5 cm and H = 10 cm. Use the linear approximation to estimate the change in the strength if *L* increases by 5 cm, *W* increases by 0.5 cm and *H* increases by 2 cm.
 - **a**. 2
 - **b**. 4
 - **c**. 6
 - **d**. 8
 - **e**. 10
- 8. Dark Invader is flying through a dark matter field whose density is given by $\delta = xyz^2$. If Dark's current position is $\vec{r}(2) = \langle 3, 2, 1 \rangle$ and his velocity is $\vec{v}(2) = \langle 1, 2, 1 \rangle$, find the rate at which the density of dark matter is changing as seen by Dark.
 - **a**. 10
 - **b**. $10\sqrt{6}$
 - **c**. $20\sqrt{6}$
 - **d**. 20
 - **e**. $\frac{20}{\sqrt{6}}$
- **9**. When there is no wind, a weather balloon floats in the direction of **decreasing** air density. If the air density is $\delta = x^2 + y^2 + z^3$ and the balloon is located at (x, y, z) = (2, 6, 1), find the vector direction in which the balloon floats.
 - **a.** $\left\langle \frac{4}{13}, \frac{12}{13}, \frac{3}{13} \right\rangle$ **b.** $\left\langle \frac{-4}{13}, \frac{12}{13}, \frac{-3}{13} \right\rangle$ **c.** $\left\langle \frac{-4}{13}, \frac{-12}{13}, \frac{-3}{13} \right\rangle$ **d.** $\left\langle \frac{4}{13}, \frac{-12}{13}, \frac{3}{13} \right\rangle$

10. Which is the plot of the vector field $\vec{F} = \langle x - 2, 2 \rangle$?

a .	111	I I N N	e e e e e e	C. KKKKK	1	4	¥.	1	$\mathbf{\tilde{s}}$
	111	1 14	****	888884	1	1	x	`	`
	111	(1, <mark>) </mark>	e e e e e	*****	1	1	x	`	~
	111	1 1 12	***** ****	x x x x 2	1	1	۷	`	`
	111		a a a a a	****** ****** ******	1	1	١	Y	`
			2 4	-4 -2 0	-7	2	1	4	~
	111	(+ x x	a a are a	*****	X	1	x,	1	1
			* * * * *	*****-20					
	111		*****	*****	1	1	Υ.	1	`
	111	1 + +4	a a a a a a	5 × × × × -41	1	4	\$	1	$\mathbf{\tilde{s}}$
	111	(1 X K	e e e e e e	eerer 1	1	1	۷	1	\$
b.	×	4 1 1	* * * * *	d. a a a a a y	\$	t	,	,	,
	N N 1	1 /4/	1 1 × 1 × 1	R R R R R A	x	t	1	1	1
	N N 1		1 1 1 1 1	****	۲	1	1	1	,
	~ ~ ^	1 1 1 21	, , , , , , , , , , , , , , , , , , ,	*****	x	1	1	1	1
			1 1 1 N N	* * * * * * Y	1	۲	1	1	
			1 1 1 1 1	KKKKKK	4	1	1	1	~
	< ⁵⁴ ·	$-2^{2}, 0$, 2, , 4, 0, 0	x x -4 x -2 x 0	N	?	1	4,	,
	N N 1	1 424	1 x x x x	** * * * * -2 ³		t	î,	1	/
	N N 1	1 1 1	1111	RRRRR					
			x x x x x	RRRRR 1-4	٩	t	1	,	1
	\mathbf{x}		,,,,,	** * * * * *	۸	t	1	1	1

11. Find a scalar potential, f(x,y,z), for $\vec{F} = \left\langle -\frac{yz}{x^2}, \frac{z}{x}, \frac{y}{x} \right\rangle$. Then f(2,2,2) - f(1,1,1) =

- **a**. 5
- **b**. 4
- **c**. 3
- **d**. 2
- **e**. 1

Work Out: (Points indicated. Part credit possible. Show all work.)

12. (15 points) Find the point(s), X = (x, y, z), on the hyperboloid $x^2 + y^2 - z^2 = 1$ where the normal vector points in the same direction as $\vec{v} = \langle 1, 5, -5 \rangle$.

13. (15 points+5 points extra credit) Find the point, X = (x, y, z), on the upper half of the hyperboloid $x^2 + y^2 - z^2 = 1$ which is closest to the point P = (4, 6, 0). What is the distance?

You may solve by either method. There is 5 points extra credit for solving by both methods.

Method: Lagrange Multipliers::

Method: Eliminate the Constraint: