Name \qquad
MATH 251
Exam 2 Version H
Fall 2018
Sections 200/202
Multiple Choice: (5 points each. No part credit.)

$1-11$	$/ 55$	13	$/ 25$
12	$/ 20$	EC	$/ 5$
		Total	$/ 105$

1. Which of these functions has the contour plot at the right?
a. $\sqrt{x^{2}+y^{2}+4 x-2 y+1}$
b. $\sqrt{x^{2}+y^{2}+4 x+2 y+5}$
c. $\sqrt{x^{2}+y^{2}-4 x-2 y+9}$
d. $x^{2}+y^{2}-4 x+2 y$
e. $x^{2}+y^{2}+4 x+2 y$

2. If $\vec{F}=\left\langle 2 x y z,-3 y^{2} z, 2 y z^{2}\right\rangle$, which of the following is FALSE?
a. $\vec{\nabla} \cdot \vec{F}=0$
b. $\vec{\nabla} \times \vec{F}=\left\langle 2 z^{2}+3 y^{2}, 2 x y,-2 x z\right\rangle$
c. \vec{F} has a vector potential.
d. \vec{F} has a scalar potential.
3. The partial derivative $\left.\frac{\partial f}{\partial x}\right|_{(2,3)}$ gives the
a. slope at $y=3$ of the x-trace of f with x fixed at 2 .
b. slope at $x=2$ of the x-trace of f with y fixed at 3 .
c. slope at $y=3$ of the y-trace of f with x fixed at 2 .
d. slope at $x=2$ of the y-trace of f with y fixed at 3 .
4. Find the tangent plane to the graph of $z=x^{2} y^{3}$ at $(x, y)=(2,1)$. The z-intercept is
a. -16
b. 16
c. 4
d. -20
e. 20
5. The equation $x^{3} z^{3}-y^{2} z^{2}=-1$ implicitly defines z as a function of x and y. Find $\frac{\partial z}{\partial x}$ at $(x, y, z)=(2,3,1)$.
a. 2
b. 1
c. 0
d. -1
e. -2
6. Find the equation of the line perpendicular to the surface $x^{3} z^{3}-y^{2} z^{2}=-1$ at $(x, y, z)=(2,3,1)$. It intersects the $x y$-plane at
a. $(0,4,0)$
b. $(-2,5,0)$
c. $(-4,6,0)$
d. $(4,2,0)$
e. $(8,0,0)$
7. The strength, S, of a support beam of length L, width W and height H is given by $S=\frac{W H^{2}}{L}$. Currently, $L=50 \mathrm{~cm}, W=5 \mathrm{~cm}$ and $H=10 \mathrm{~cm}$. Use the linear approximation to estimate the change in the strength if L increases by $5 \mathrm{~cm}, W$ increases by 0.5 cm and H increases by 2 cm .
a. 2
b. 4
c. 6
d. 8
e. 10
8. Dark Invader is flying through a dark matter field whose density is given by $\delta=x y z^{2}$. If Dark's current position is $\vec{r}(2)=\langle 3,2,1\rangle$ and his velocity is $\vec{v}(2)=\langle 1,2,1\rangle$, find the rate at which the density of dark matter is changing as seen by Dark.
a. 10
b. $10 \sqrt{6}$
c. $20 \sqrt{6}$
d. 20
e. $\frac{20}{\sqrt{6}}$
9. When there is no wind, a weather balloon floats in the direction of decreasing air density. If the air density is $\delta=x^{2}+y^{2}+z^{3}$ and the balloon is located at $(x, y, z)=(2,6,1)$, find the vector direction in which the balloon floats.
a. $\left\langle\frac{4}{13}, \frac{12}{13}, \frac{3}{13}\right\rangle$
b. $\left\langle\frac{-4}{13}, \frac{12}{13}, \frac{-3}{13}\right\rangle$
c. $\left\langle\frac{-4}{13}, \frac{-12}{13}, \frac{-3}{13}\right\rangle$
d. $\left\langle\frac{4}{13}, \frac{-12}{13}, \frac{3}{13}\right\rangle$
10. Which is the plot of the vector field $\vec{F}=\langle x-2,2\rangle$?
a.

c.
$\rightarrow 2$
b.

d.

11. Find a scalar potential, $f(x, y, z)$, for $\vec{F}=\left\langle-\frac{y z}{x^{2}}, \frac{z}{x}, \frac{y}{x}\right\rangle$. Then $f(2,2,2)-f(1,1,1)=$
a. 5
b. 4
c. 3
d. 2
e. 1

Work Out: (Points indicated. Part credit possible. Show all work.)
12. (15 points) Find the point(s), $X=(x, y, z)$, on the hyperboloid $x^{2}+y^{2}-z^{2}=1$ where the normal vector points in the same direction as $\vec{v}=\langle 1,5,-5\rangle$.
13. (15 points +5 points extra credit) Find the point, $X=(x, y, z)$, on the upper half of the hyperboloid $x^{2}+y^{2}-z^{2}=1$ which is closest to the point $P=(4,6,0)$. What is the distance?

You may solve by either method. There is 5 points extra credit for solving by both methods.
Method: Lagrange Multipliers::

Method: Eliminate the Constraint:

