Name_____

MATH 251 Exam 1 Version A Fall 2020

Sections 517 P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-9	/45	12	/15
10	/5	13	/28
11	/10	Total	/103

- 1. The points A = (1,2,3) and B = (25,10,9) are the endpoints of the diameter of a sphere. If C = (a,b,c) is the center and r is the radius, what is a+b+c+r?
 - **a**. 38
 - **b**. 51
 - **c**. 64
 - **d**. 76
 - **e**. 194
- **2**. If \vec{u} points Up and \vec{v} points NorthEast, in what direction does $\vec{u} \times \vec{v}$ point?
 - a. SouthEast
 - **b**. SouthWest
 - c. NorthWest
 - d. Down
- 3. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$\vec{F}_1 = \langle 3, 1, 2 \rangle$$
 $\vec{F}_2 = \langle -2, 4, 1 \rangle$

They now apply a $3^{\rm rd}$ tractor beam with the force, $\vec{F}_3 = \langle a, b, c \rangle$, to keep the pod stationary. What is a+b+c?

- **a**. -9
- **b**. -1
- **c**. 0
- **d**. 1
- **e**. 9

- **4**. The thrusters on the Starship Galileo exert the force $\vec{F} = \langle 2, 3, -1 \rangle$ which moves the ship from P = (4,3,5) to Q = (5,4,3). Find the work done by the thrusters.
 - **a**. W = 1
 - **b**. W = 3
 - **c**. W = 5
 - **d**. W = 7
 - **e**. W = 9
- **5**. Find the tangent vector, \vec{v} , to the curve $\vec{r}(t) = (t^3, t^2, t)$ at the point (8, 4, 2). Then find its dot product with $\vec{F} = \langle 1, 2, 3 \rangle$.
 - **a**. $\vec{F} \cdot \vec{v} = (12, 4, 1)$
 - **b**. $\vec{F} \cdot \vec{v} = (12, 8, 3)$
 - **c**. $\vec{F} \cdot \vec{v} = 7$
 - $\mathbf{d}. \ \vec{F} \cdot \vec{v} = 17$
 - $\mathbf{e.} \ \vec{F} \cdot \vec{v} = 23$

6. Which of the following is the graph of the equation $z^2 = 4 + (x-1)^2 + (y-3)^2$?

- 7. A point has spherical coordinates $(\rho, \phi, \theta) = \left(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{6}\right)$. If its rectangular coordinates are (x, y, z), then xyz =
 - **a**. $\frac{3}{4}$
 - **b**. $\frac{3}{2}$
 - **c**. $\frac{\sqrt{3}}{2}$
 - **d**. $\frac{\sqrt{3}}{4}$
 - **e**. $\frac{\sqrt{3}}{8}$
- **8**. Find the area of the triangle with two edges $\vec{v} = \langle -2, 1, 3 \rangle$ and $\vec{w} = \langle 1, 0, 2 \rangle$.
 - **a**. $A = \frac{1}{2}\sqrt{27}$
 - **b**. $A = \sqrt{27}$
 - **c**. $A = \frac{1}{2}\sqrt{54}$
 - **d**. $A = \sqrt{54}$
 - **e**. A = 27
- **9**. Find the volume of the parallelepiped with edges $\vec{u} = \langle 3, -2, 1 \rangle$, $\vec{v} = \langle -2, 1, 3 \rangle$ and $\vec{w} = \langle 1, 0, 2 \rangle$.
 - **a**. V = 19
 - **b**. V = 9
 - **c**. $V = \frac{9}{2}$
 - **d**. V = -9
 - **e**. V = -19

Work Out: (Points indicated. Part credit possible. Show all work.)

- **10**. (5 points) Find a parametric equation of the line which is perpendicular to the plane 3x + 2y z = 4 and passes through the point (3,5,1).
- **11**. (10 points) Find a normal equation of the plane which contains the line (x,y,z) = (3-2t,2+t,2+2t) and passes through the point (3,4,1).

12. (15 points) Consider the two planes

$$y + z = 3$$

$$x + 2y + z = 4$$

- a. (4 pts) Find the angle (in degrees) between the planes.
- **b**. (4 pts) Find a direction vector, \vec{v} , for the line of intersection of the planes.
- **c**. (4 pts) Find a point, P, on the line of intersection of the planes.
- d. (3 pts) Find a parametric equation for the line of intersection of the planes.

			the parametric curve $\vec{r}(t) = \left(\frac{1}{3}t^3, t^2, 2t\right)$ compute each of the following:		
	a.	(3 pts)	velocity \vec{v}	$\vec{v} = $	
	b.	(3 pts)	acceleration \vec{a}		
	C.	(3 pts)	ierk \vec{i}	<i>a</i> =	
		(-1)		$\vec{j} = $	
	d.	,	speed $ \vec{v} $ (Simplify!) The quantity inside the square root is a perfect square.		
				$ \vec{v} = \underline{\hspace{1cm}}$	
	е.	(2 pts)	tangential acceleration a_T		
	f.	(2 pts)	the values of t where the curve passes thru the points	$a_T = \underline{\hspace{1cm}}$	
			$A = \left(\frac{1}{3}, 1, 2\right)$	t =	
			B = (9,9,6)	<i>t</i> =	
	g.	(4 pts)	arc length between $\left(\frac{1}{3},1,2\right)$ and $(9,9,6)$		
				L =	
	h.		A wire has the shape of this curve between $\left(\frac{1}{3},1,2\right)$ and $(9,9,2)$ are if the linear mass density is $\delta=3yz$.	6). Find the	e mass of
				<i>M</i> =	
	i.	(4 pts) pushes	A wire has the shape of this curve. Find the work done by the force a bead along the wire from $\left(\frac{1}{3},1,2\right)$ to $(9,9,6)$.	$\vec{F} = (0, z, -1)$	-y) which
				W =	