\qquad
MATH 251
Exam 1 Version A
Fall 2020
Sections 517
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-9$	$/ 45$	12	$/ 15$
10	$/ 5$	13	$/ 28$
11	$/ 10$	Total	$/ 103$

1. The points $A=(1,2,3)$ and $B=(25,10,9)$ are the endpoints of the diameter of a sphere. If $C=(a, b, c)$ is the center and r is the radius, what is $a+b+c+r$?
a. 38
b. 51
c. 64
d. 76
e. 194
2. If \vec{u} points Up and \vec{v} points NorthEast, in what direction does $\vec{u} \times \vec{v}$ point?
a. SouthEast
b. SouthWest
c. NorthWest
d. Down
3. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$
\vec{F}_{1}=\langle 3,1,2\rangle \quad \vec{F}_{2}=\langle-2,4,1\rangle
$$

They now apply a $3^{\text {rd }}$ tractor beam with the force, $\vec{F}_{3}=\langle a, b, c\rangle$, to keep the pod stationary. What is $a+b+c$?
a. -9
b. -1
c. 0
d. 1
e. 9
4. The thrusters on the Starship Galileo exert the force $\vec{F}=\langle 2,3,-1\rangle$ which moves the ship from $P=(4,3,5)$ to $Q=(5,4,3)$. Find the work done by the thrusters.
a. $W=1$
b. $W=3$
c. $W=5$
d. $W=7$
e. $W=9$
5. Find the tangent vector, \vec{v}, to the curve $\vec{r}(t)=\left(t^{3}, t^{2}, t\right)$ at the point $(8,4,2)$. Then find its dot product with $\vec{F}=\langle 1,2,3\rangle$.
a. $\vec{F} \cdot \vec{v}=(12,4,1)$
b. $\vec{F} \cdot \vec{v}=(12,8,3)$
c. $\vec{F} \cdot \vec{v}=7$
d. $\vec{F} \cdot \vec{v}=17$
e. $\vec{F} \cdot \vec{v}=23$
6. Which of the following is the graph of the equation $z^{2}=4+(x-1)^{2}+(y-3)^{2}$?
a

b

d

7. A point has spherical coordinates $(\rho, \phi, \theta)=\left(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{6}\right)$. If its rectangular coordinates are (x, y, z), then $x y z=$
a. $\frac{3}{4}$
b. $\frac{3}{2}$
c. $\frac{\sqrt{3}}{2}$
d. $\frac{\sqrt{3}}{4}$
e. $\frac{\sqrt{3}}{8}$
8. Find the area of the triangle with two edges $\vec{v}=\langle-2,1,3\rangle$ and $\vec{w}=\langle 1,0,2\rangle$.
a. $A=\frac{1}{2} \sqrt{27}$
b. $A=\sqrt{27}$
c. $A=\frac{1}{2} \sqrt{54}$
d. $A=\sqrt{54}$
e. $A=27$
9. Find the volume of the parallelepiped with edges $\vec{u}=\langle 3,-2,1\rangle, \vec{v}=\langle-2,1,3\rangle$ and $\vec{w}=\langle 1,0,2\rangle$.
a. $V=19$
b. $V=9$
c. $V=\frac{9}{2}$
d. $V=-9$
e. $V=-19$

Work Out: (Points indicated. Part credit possible. Show all work.)
10. (5 points) Find a parametric equation of the line which is perpendicular to the plane $3 x+2 y-z=4$ and passes through the point $(3,5,1)$.
11. (10 points) Find a normal equation of the plane which contains the line $(x, y, z)=(3-2 t, 2+t, 2+2 t)$ and passes through the point $(3,4,1)$.
12. (15 points) Consider the two planes

$$
\begin{array}{r}
y+z=3 \\
x+2 y+z=4
\end{array}
$$

a. (4 pts) Find the angle (in degrees) between the planes.
b. (4 pts) Find a direction vector, \vec{v}, for the line of intersection of the planes.
c. (4 pts) Find a point, P, on the line of intersection of the planes.
d. (3 pts) Find a parametric equation for the line of intersection of the planes.
13. (28 points) For the parametric curve $\vec{r}(t)=\left(\frac{1}{3} t^{3}, t^{2}, 2 t\right)$ compute each of the following:
a. (3 pts) velocity \vec{v}

$$
\vec{v}=
$$

b. (3 pts) acceleration \vec{a}

$$
\vec{a}=
$$

c. $(3 \mathrm{pts})$ jerk \vec{j}

$$
\vec{j}=
$$

d. (3 pts) speed $|\vec{v}| \quad$ (Simplify!)

HINT: The quantity inside the square root is a perfect square.

$$
|\vec{v}|=
$$

e. (2 pts) tangential acceleration a_{T}

$$
a_{T}=
$$

f. (2 pts) the values of t where the curve passes thru the points

$$
\begin{aligned}
A & =\left(\frac{1}{3}, 1,2\right) \\
B & =(9,9,6)
\end{aligned}
$$

$$
t=
$$

\qquad

$$
t=
$$

\qquad
g. (4 pts) arc length between $\left(\frac{1}{3}, 1,2\right)$ and $(9,9,6)$

$$
L=
$$

\qquad
h. (4 pts) A wire has the shape of this curve between $\left(\frac{1}{3}, 1,2\right)$ and $(9,9,6)$. Find the mass of the wire if the linear mass density is $\delta=3 y z$.

$$
M=
$$

\qquad
i. (4 pts) A wire has the shape of this curve. Find the work done by the force $\vec{F}=(0, z,-y)$ which pushes a bead along the wire from $\left(\frac{1}{3}, 1,2\right)$ to $(9,9,6)$.

$$
W=
$$

\qquad

