Name_____

MATH 251 Exam 1 Version A Fall 2020

Sections 517 Solutions P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-9	/45	12	/15
10	/5	13	/28
11	/10	Total	/103

- 1. The points A = (1,2,3) and B = (25,10,9) are the endpoints of the diameter of a sphere. If C = (a,b,c) is the center and r is the radius, what is a+b+c+r?
 - a. 38 Correct Choice
 - **b**. 51
 - **c**. 64
 - **d**. 76
 - **e**. 194

Solution: The center is $C = \frac{A+B}{2} = (13,6,6)$ and the radius is $r = D(A,C) = \sqrt{(13-1)^2 + (6-2)^2 + (6-3)^2} = \sqrt{144+16+9} = 13$. So a+b+c+r=13+6+6+13=38.

- **2**. If \vec{u} points Up and \vec{v} points NorthEast, in what direction does $\vec{u} \times \vec{v}$ point?
 - a. SouthEast
 - b. SouthWest
 - c. NorthWest Correct Choice
 - d. Down

Solution: Aim the pointer finger of your right hand Up (\vec{u}) with your middle finger NorthEast (\vec{v}) . Then your thumb points NorthWest $(\vec{u} \times \vec{v})$.

3. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$\vec{F}_1 = \langle 3, 1, 2 \rangle$$
 $\vec{F}_2 = \langle -2, 4, 1 \rangle$

They now apply a 3^{rd} tractor beam with the force, $\vec{F}_3 = \langle a, b, c \rangle$, to keep the pod stationary. What is a + b + c?

- a. -9 Correct Choice
- **b**. -1
- **c**. 0
- **d**. 1
- **e**. 9

Solution: $\vec{F}_3 = -\vec{F}_1 - \vec{F}_2 = -\langle 3, 1, 2 \rangle - \langle -2, 4, 1 \rangle = \langle -1, -5, -3 \rangle$ So a + b + c = -9

4. The thrusters on the Starship Galileo exert the force $\vec{F} = \langle 2, 3, -1 \rangle$ which moves the ship from P = (4, 3, 5) to Q = (5, 4, 3). Find the work done by the thrusters.

a.
$$W = 1$$

b.
$$W = 3$$

c.
$$W = 5$$

d.
$$W = 7$$
 Correct Choice

e.
$$W = 9$$

Solution: The displacement is $\overrightarrow{PQ} = Q - P = (1, 1, -2)$. So the work done is $W = \overrightarrow{F} \cdot \overrightarrow{PQ} = 2 + 3 + 2 = 7$

5. Find the tangent vector, \vec{v} , to the curve $\vec{r}(t) = (t^3, t^2, t)$ at the point (8,4,2). Then find its dot product with $\vec{F} = \langle 1, 2, 3 \rangle$.

a.
$$\vec{F} \cdot \vec{v} = (12, 4, 1)$$

b.
$$\vec{F} \cdot \vec{v} = (12, 8, 3)$$

c.
$$\vec{F} \cdot \vec{v} = 7$$

$$\mathbf{d}. \ \vec{F} \cdot \vec{v} = 17$$

e.
$$\vec{F} \cdot \vec{v} = 23$$
 Correct Choice

Solution: $\vec{v}(t) = \langle 3t^2, 2t, 1 \rangle$ $\vec{v}(2) = \langle 12, 4, 1 \rangle$ $\vec{F} \cdot \vec{v} = (1)(12) + (2)(4) + (3)(1) = 23$

6. Which of the following is the graph of the equation $z^2 = 4 + (x-1)^2 + (y-3)^2$?

b

Correct Choice

Solution: $z^2 - (x-1)^2 - (y-3)^2 = 4$ is a hyperboloid of 2 sheets with axis parallel to the z-axis.

- 7. A point has spherical coordinates $(\rho, \phi, \theta) = \left(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{6}\right)$. If its rectangular coordinates are (x, y, z), then xyz =
 - **a**. $\frac{3}{4}$
 - **b**. $\frac{3}{2}$
 - **c**. $\frac{\sqrt{3}}{2}$
 - **d**. $\frac{\sqrt{3}}{4}$ Correct Choice
 - **e**. $\frac{\sqrt{3}}{8}$

Solution:
$$x = \rho \sin \phi \cos \theta = \sqrt{2} \sin \frac{\pi}{4} \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$
 $xyz = \frac{\sqrt{3}}{2} \frac{1}{2} 1 = \frac{\sqrt{3}}{4}$ $y = \rho \sin \phi \sin \theta = \sqrt{2} \sin \frac{\pi}{4} \sin \frac{\pi}{6} = \frac{1}{2}$ $z = \rho \cos \phi = \sqrt{2} \cos \frac{\pi}{4} = 1$

- **8**. Find the area of the triangle with two edges $\vec{v} = \langle -2, 1, 3 \rangle$ and $\vec{w} = \langle 1, 0, 2 \rangle$.
 - **a**. $A = \frac{1}{2}\sqrt{27}$
 - **b**. $A = \sqrt{27}$
 - **c**. $A = \frac{1}{2}\sqrt{54}$ Correct Choice
 - **d**. $A = \sqrt{54}$
 - **e**. A = 27

Solution:
$$\vec{v} \times \vec{w} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -2 & 1 & 3 \\ 1 & 0 & 2 \end{vmatrix} = \hat{\imath}(2-0) - \hat{\jmath}(-4-3) + \hat{k}(0-1) = \langle 2, 7, -1 \rangle$$

$$A = \frac{1}{2} |\vec{v} \times \vec{w}| = \frac{1}{2} \sqrt{4 + 49 + 1} = \frac{1}{2} \sqrt{54}$$

- **9**. Find the volume of the parallelepiped with edges $\vec{u} = \langle 3, -2, 1 \rangle$, $\vec{v} = \langle -2, 1, 3 \rangle$ and $\vec{w} = \langle 1, 0, 2 \rangle$.
 - **a**. V = 19
 - **b**. V = 9 Correct Choice
 - **c**. $V = \frac{9}{2}$
 - **d**. V = -9
 - **e**. V = -19

Solution:
$$\vec{u} \cdot \vec{v} \times \vec{w} = \langle 3, -2, 1 \rangle \cdot \langle 2, 7, -1 \rangle = 6 - 14 - 1 = -9$$
 $V = |\vec{u} \cdot \vec{v} \times \vec{w}| = 9$

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (5 points) Find a parametric equation of the line which is perpendicular to the plane 3x + 2y - z = 4 and passes through the point (3,5,1).

Solution: The direction of the line is the normal to the plane:

$$\vec{v} = \vec{N} = \langle 3, 2, -1 \rangle$$

A point on the line is P = (3,5,1). So the line is

$$X = P + tv = (3,5,1) + t\langle 3,2,-1 \rangle$$

or

$$x = 3 + 3t$$
 $y = 5 + 2t$ $z = 1 - t$

11. (10 points) Find a normal equation of the plane which contains the line (x,y,z) = (3-2t,2+t,2+2t) and passes through the point (3,4,1).

Solution: Two points on the plane are the point on the line and the given point:

$$P = (3,2,2)$$
 and $Q = (3,4,1)$

So one tangent vector is:

$$\vec{u} = \overrightarrow{PQ} = Q - P = \langle 0, 2, -1 \rangle$$

Another tangent vector is the tangent to the line:

$$\vec{v} = \langle -2, 1, 2 \rangle$$

The normal to the plane is the cross product of the two tangent vectors:

$$\vec{N} = \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & -1 \\ -2 & 1 & 2 \end{vmatrix} = \hat{i}(4+1) - \hat{j}(0-2) + \hat{k}(0+4) = \langle 5, 2, 4 \rangle$$

So an equation of the plane is $\vec{N} \cdot X = \vec{N} \cdot P$, or:

$$5x + 2y + 4z = 5(3) + 2(2) + 4(2) = 27$$

Any multiple of this is OK.

12. (15 points) Consider the two planes

$$y + z = 3$$
$$x + 2y + z = 4$$

a. (4 pts) Find the angle (in degrees) between the planes.

Solution: The normal vectors are: $\vec{N}_1 = \langle 0, 1, 1 \rangle$ and $\vec{N}_2 = \langle 1, 2, 1 \rangle$. The cosine of the angle between them is:

$$\cos\theta = \frac{\vec{N}_1 \cdot \vec{N}_2}{|\vec{N}_1| |\vec{N}_2|} = \frac{2+1}{\sqrt{1+1}\sqrt{1+4+1}} = \frac{3}{\sqrt{2}\sqrt{6}} = \frac{\sqrt{3}}{2}$$

So $\theta = 30^{\circ}$

b. (4 pts) Find a direction vector, \vec{v} , for the line of intersection of the planes.

Solution: The direction of the line is perpendicular to both normals. So

$$\vec{v} = \vec{N}_1 \times \vec{N}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \hat{i}(1-2) - \hat{j}(0-1) + \hat{k}(0-1) = \langle -1, 1, -1 \rangle$$

Any multiple of this is acceptable.

 \mathbf{c} . (4 pts) Find a point, P, on the line of intersection of the planes.

Solution: If we look for the solution with z = 0, then the equations reduce to

y = 3 and x + 2y = 4. So x = -2 and a point is P = (-2, 3, 0).

If we look for the solution with x = 0, then the equations reduce to

y+z=3 and 2y+z=4. We subtract the equations to see y=1. Then z=2 and a point is P=(0,1,2).

If we look for the solution with y = 0, then the equations reduce to

z=3 and x+z=4. So x=1 and a point is P=(1,0,3).

There are many other correct answers.

d. (3 pts) Find a parametric equation for the line of intersection of the planes.

Solution: There are many correct answers, depending on the P and \vec{v} you found. Here is one:

$$X = P + t\vec{v} = (-2, 3, 0) + t\langle -1, 1, -1 \rangle$$

or

$$x = -2 - t \qquad y = 3 + t \qquad z = -t$$

- **13**. (28 points) For the parametric curve $\vec{r}(t) = \left(\frac{1}{3}t^3, t^2, 2t\right)$ compute each of the following:
 - **a**. (3 pts) velocity \vec{v}

Solution: Differentiate \vec{r} : $\vec{v} = \underline{\qquad (t^2, 2t, 2)}$

b. (3 pts) acceleration \vec{a}

Solution: Differentiate \vec{v} : $\vec{a} = \underline{\qquad (2t, 2, 0)}$

c. (3 pts) jerk \vec{j}

Solution: Differentiate \vec{a} : $\vec{j} = (2,0,0)$

d. (3 pts) speed $|\vec{v}|$ (Simplify!)

HINT: The quantity inside the square root is a perfect square.

Solution:
$$|\vec{v}| = \sqrt{t^4 + 4t^2 + 4} = \sqrt{(t^2 + 2)^2} = t^2 + 2$$

 $|\vec{v}| = \underline{t^2 + 2}$

e. (2 pts) tangential acceleration a_T

Solution: $a_T = \frac{d|\vec{v}|}{dt} = \frac{d}{dt}(t^2 + 2) = 2t$

 $a_T = \underline{2t}$

f. (2 pts) the values of t where the curve passes thru the points

$$A = \left(\frac{1}{3}, 1, 2\right)$$

$$t = \underline{1}$$

$$B = (9, 9, 6)$$

 $t = \underline{}$

Solution: Compare each point to the curve $\left(\frac{1}{3}t^3, t^2, 2t\right)$. The y component is sufficient, but you should check the other components.

g. (4 pts) arc length between $\left(\frac{1}{3},1,2\right)$ and (9,9,6)

Solution:
$$L = \int_{(1/3,1,2)}^{(9,9,6)} ds = \int_{1}^{3} |\vec{v}| dt = \int_{1}^{3} (t^2 + 2) dt = \left[\frac{t^3}{3} + 2t \right]_{1}^{3}$$

= $(15) - \left(\frac{1}{3} + 2 \right) = \frac{38}{3}$

 $L = \frac{38}{2}$

h. (4 pts) A wire has the shape of this curve between $\left(\frac{1}{3},1,2\right)$ and (9,9,6). Find the mass of the wire if the linear mass density is $\delta = 3vz$.

Solution:
$$|\vec{v}| = t^2 + 2$$
 $\delta = 3yz = 3t^22t = 6t^3$

 $M = \int_{(1/3,1,2)}^{(9,9,6)} \delta \, ds = \int_{1}^{3} 3yz \, |\vec{v}| \, dt = \int_{1}^{3} 6t^{3}(t^{2} + 2) \, dt = \int_{1}^{3} (6t^{5} + 12t^{3}) \, dt = \left[t^{6} + 3t^{4} \right]_{1}^{3}$ $=(3^6+3^5)-(1+3)=968$

M = 968

i. (4 pts) A wire has the shape of this curve. Find the work done by the force $\vec{F} = (0, z, -y)$ which pushes a bead along the wire from $(\frac{1}{3}, 1, 2)$ to (9, 9, 6).

Solution:
$$\vec{F} = (0, z, -y) = (0, 2t, -t^2)$$
 $\vec{v} = (t^2, 2t, 2)$ $\vec{F} \cdot \vec{v} = 4t^2 - 2t^2 = 2t^2$ $W = \int_{(1/3, 1/2)}^{(9,9,6)} \vec{F} \cdot d\vec{s} = \int_{1}^{3} \vec{F} \cdot \vec{v} dt = \int_{1}^{3} 2t^2 dt = \left[\frac{2t^3}{3}\right]_{1}^{3} = 18 - \frac{2}{3} = \frac{52}{3}$ $W = \frac{52}{3}$