Name \qquad
MATH 251
Exam 1 Version A
Fall 2020
Sections 517 Solutions P. Yasskin
Multiple Choice: (5 points each. No part credit.)

$1-9$	$/ 45$	12	$/ 15$
10	$/ 5$	13	$/ 28$
11	$/ 10$	Total	$/ 103$

1. The points $A=(1,2,3)$ and $B=(25,10,9)$ are the endpoints of the diameter of a sphere. If $C=(a, b, c)$ is the center and r is the radius, what is $a+b+c+r$?
a. 38

Correct Choice
b. 51
c. 64
d. 76
e. 194

Solution: The center is $C=\frac{A+B}{2}=(13,6,6)$ and the radius is $r=D(A, C)=\sqrt{(13-1)^{2}+(6-2)^{2}+(6-3)^{2}}=\sqrt{144+16+9}=13$.
So $a+b+c+r=13+6+6+13=38$.
2. If \vec{u} points Up and \vec{v} points NorthEast, in what direction does $\vec{u} \times \vec{v}$ point?
a. SouthEast
b. SouthWest
c. NorthWest

Correct Choice
d. Down

Solution: Aim the pointer finger of your right hand Up (\vec{u}) with your middle finger NorthEast (\vec{v}). Then your thumb points NorthWest $(\vec{u} \times \vec{v})$.
3. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$
\vec{F}_{1}=\langle 3,1,2\rangle \quad \vec{F}_{2}=\langle-2,4,1\rangle
$$

They now apply a $3^{\text {rd }}$ tractor beam with the force, $\vec{F}_{3}=\langle a, b, c\rangle$, to keep the pod stationary. What is $a+b+c$?
a. -9 Correct Choice
b. -1
c. 0
d. 1
e. 9

Solution: $\quad \vec{F}_{3}=-\vec{F}_{1}-\vec{F}_{2}=-\langle 3,1,2\rangle-\langle-2,4,1\rangle=\langle-1,-5,-3\rangle \quad$ So $\quad a+b+c=-9$
4. The thrusters on the Starship Galileo exert the force $\vec{F}=\langle 2,3,-1\rangle$ which moves the ship from $P=(4,3,5)$ to $Q=(5,4,3)$. Find the work done by the thrusters.
a. $W=1$
b. $W=3$
c. $W=5$
d. $W=7 \quad$ Correct Choice
e. $W=9$

Solution: The displacement is $\overrightarrow{P Q}=Q-P=(1,1,-2)$. So the work done is $W=\vec{F} \cdot \overrightarrow{P Q}=2+3+2=7$
5. Find the tangent vector, \vec{v}, to the curve $\vec{r}(t)=\left(t^{3}, t^{2}, t\right)$ at the point $(8,4,2)$. Then find its dot product with $\vec{F}=\langle 1,2,3\rangle$.
a. $\vec{F} \cdot \vec{v}=(12,4,1)$
b. $\vec{F} \cdot \vec{v}=(12,8,3)$
c. $\vec{F} \cdot \vec{v}=7$
d. $\vec{F} \cdot \vec{v}=17$
e. $\vec{F} \cdot \vec{v}=23 \quad$ Correct Choice

Solution: $\vec{v}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle \quad \vec{v}(2)=\langle 12,4,1\rangle \quad \vec{F} \cdot \vec{v}=(1)(12)+(2)(4)+(3)(1)=23$
6. Which of the following is the graph of the equation $z^{2}=4+(x-1)^{2}+(y-3)^{2}$?

Solution: $z^{2}-(x-1)^{2}-(y-3)^{2}=4$ is a hyperboloid of 2 sheets with axis parallel to the z-axis.
7. A point has spherical coordinates $(\rho, \phi, \theta)=\left(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{6}\right)$. If its rectangular coordinates are (x, y, z), then $x y z=$
a. $\frac{3}{4}$
b. $\frac{3}{2}$
c. $\frac{\sqrt{3}}{2}$
d. $\frac{\sqrt{3}}{4}$ Correct Choice
e. $\frac{\sqrt{3}}{8}$

Solution: $\quad x=\rho \sin \phi \cos \theta=\sqrt{2} \sin \frac{\pi}{4} \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \quad x y z=\frac{\sqrt{3}}{2} \frac{1}{2} 1=\frac{\sqrt{3}}{4}$

$$
\begin{array}{lll}
y=\rho \sin \phi \sin \theta & =\sqrt{2} \sin \frac{\pi}{4} \sin \frac{\pi}{6} & =\frac{1}{2} \\
z=\rho \cos \phi & =\sqrt{2} \cos \frac{\pi}{4} & =1
\end{array}
$$

8. Find the area of the triangle with two edges $\vec{v}=\langle-2,1,3\rangle$ and $\vec{w}=\langle 1,0,2\rangle$.
a. $A=\frac{1}{2} \sqrt{27}$
b. $A=\sqrt{27}$
c. $A=\frac{1}{2} \sqrt{54} \quad$ Correct Choice
d. $A=\sqrt{54}$
e. $A=27$

Solution: $\vec{v} \times \vec{w}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -2 & 1 & 3 \\ 1 & 0 & 2\end{array}\right|=\hat{\imath}(2-0)-\hat{\jmath}(-4-3)+\hat{k}(0-1)=\langle 2,7,-1\rangle$
$A=\frac{1}{2}|\vec{v} \times \vec{w}|=\frac{1}{2} \sqrt{4+49+1}=\frac{1}{2} \sqrt{54}$
9. Find the volume of the parallelepiped with edges $\vec{u}=\langle 3,-2,1\rangle, \quad \vec{v}=\langle-2,1,3\rangle$ and $\vec{w}=\langle 1,0,2\rangle$.
a. $V=19$
b. $V=9 \quad$ Correct Choice
c. $V=\frac{9}{2}$
d. $V=-9$
e. $V=-19$

Solution: $\vec{u} \cdot \vec{v} \times \vec{w}=\langle 3,-2,1\rangle \cdot\langle 2,7,-1\rangle=6-14-1=-9 \quad V=|\vec{u} \cdot \vec{v} \times \vec{w}|=9$

Work Out: (Points indicated. Part credit possible. Show all work.)
10. (5 points) Find a parametric equation of the line which is perpendicular to the plane $3 x+2 y-z=4$ and passes through the point $(3,5,1)$.

Solution: The direction of the line is the normal to the plane:

$$
\vec{v}=\vec{N}=\langle 3,2,-1\rangle
$$

A point on the line is $P=(3,5,1)$. So the line is

$$
X=P+t v=(3,5,1)+t\langle 3,2,-1\rangle
$$

or

$$
x=3+3 t \quad y=5+2 t \quad z=1-t
$$

11. (10 points) Find a normal equation of the plane which contains the line $(x, y, z)=(3-2 t, 2+t, 2+2 t)$ and passes through the point $(3,4,1)$.

Solution: Two points on the plane are the point on the line and the given point:

$$
P=(3,2,2) \quad \text { and } \quad Q=(3,4,1)
$$

So one tangent vector is:

$$
\vec{u}=\overrightarrow{P Q}=Q-P=\langle 0,2,-1\rangle
$$

Another tangent vector is the tangent to the line:

$$
\vec{v}=\langle-2,1,2\rangle
$$

The normal to the plane is the cross product of the two tangent vectors:

$$
\vec{N}=\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
0 & 2 & -1 \\
-2 & 1 & 2
\end{array}\right|=\hat{\imath}(4+1)-\hat{\jmath}(0-2)+\hat{k}(0+4)=\langle 5,2,4\rangle
$$

So an equation of the plane is $\vec{N} \cdot X=\vec{N} \cdot P$, or:

$$
5 x+2 y+4 z=5(3)+2(2)+4(2)=27
$$

Any multiple of this is OK.
12. (15 points) Consider the two planes

$$
\begin{aligned}
y+z & =3 \\
x+2 y+z & =4
\end{aligned}
$$

a. (4 pts) Find the angle (in degrees) between the planes.

Solution: The normal vectors are: $\vec{N}_{1}=\langle 0,1,1\rangle$ and $\vec{N}_{2}=\langle 1,2,1\rangle$. The cosine of the angle between them is:

$$
\cos \theta=\frac{\vec{N}_{1} \cdot \vec{N}_{2}}{\left|\vec{N}_{1}\right|\left|\vec{N}_{2}\right|}=\frac{2+1}{\sqrt{1+1} \sqrt{1+4+1}}=\frac{3}{\sqrt{2} \sqrt{6}}=\frac{\sqrt{3}}{2}
$$

So $\theta=30^{\circ}$
b. (4 pts) Find a direction vector, \vec{v}, for the line of intersection of the planes.

Solution: The direction of the line is perpendicular to both normals. So

$$
\vec{v}=\vec{N}_{1} \times \vec{N}_{2}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right|=\hat{\imath}(1-2)-\hat{\jmath}(0-1)+\hat{k}(0-1)=\langle-1,1,-1\rangle
$$

Any multiple of this is acceptable.
c. (4 pts) Find a point, P, on the line of intersection of the planes.

Solution: If we look for the solution with $z=0$, then the equations reduce to $y=3$ and $x+2 y=4$. So $x=-2$ and a point is $P=(-2,3,0)$.
If we look for the solution with $x=0$, then the equations reduce to
$y+z=3$ and $2 y+z=4$. We subtract the equations to see $y=1$. Then $z=2$ and a point is $P=(0,1,2)$.
If we look for the solution with $y=0$, then the equations reduce to $z=3$ and $x+z=4$. So $x=1$ and a point is $P=(1,0,3)$.
There are many other correct answers.
d. (3 pts) Find a parametric equation for the line of intersection of the planes.

Solution: There are many correct answers, depending on the P and \vec{v} you found. Here is one:

$$
X=P+\vec{t}=(-2,3,0)+t\langle-1,1,-1\rangle
$$

or

$$
x=-2-t \quad y=3+t \quad z=-t
$$

13. (28 points) For the parametric curve $\vec{r}(t)=\left(\frac{1}{3} t^{3}, t^{2}, 2 t\right)$ compute each of the following:
a. (3 pts) velocity \vec{v}

Solution: Differentiate \vec{r} :

$$
\vec{v}=\quad\left(t^{2}, 2 t, 2\right)
$$

b. (3 pts) acceleration \vec{a}

Solution: Differentiate \vec{v} :

$$
\vec{a}=
$$

\qquad
c. (3 pts) jerk \vec{j}

Solution: Differentiate \vec{a} :
$\vec{j}=$ \qquad
d. (3 pts) speed $|\vec{v}|$ (Simplify!)

HINT: The quantity inside the square root is a perfect square.
Solution: $|\vec{v}|=\sqrt{t^{4}+4 t^{2}+4}=\sqrt{\left(t^{2}+2\right)^{2}}=t^{2}+2$

$$
|\vec{v}|=\frac{t^{2}+2}{}
$$

e. (2 pts) tangential acceleration a_{T}

Solution: $\quad a_{T}=\frac{d|\vec{v}|}{d t}=\frac{d}{d t}\left(t^{2}+2\right)=2 t$

$$
a_{T}=\underline{2 t}
$$

f. (2 pts) the values of t where the curve passes thru the points

$$
\begin{aligned}
A & =\left(\frac{1}{3}, 1,2\right) \\
B & =(9,9,6)
\end{aligned}
$$

$$
t=
$$

\qquad

$$
t=3
$$

Solution: Compare each point to the curve $\left(\frac{1}{3} t^{3}, t^{2}, 2 t\right)$. The y component is sufficient, but you should check the other components.
g. (4 pts) arc length between $\left(\frac{1}{3}, 1,2\right)$ and $(9,9,6)$

Solution: $\quad L=\int_{(1 / 3,1,2)}^{(9,9,6)} d s=\int_{1}^{3}|\vec{v}| d t=\int_{1}^{3}\left(t^{2}+2\right) d t=\left[\frac{t^{3}}{3}+2 t\right]_{1}^{3}$

$$
=(15)-\left(\frac{1}{3}+2\right)=\frac{38}{3}
$$

$$
L=\frac{38}{3}
$$

h. (4 pts) A wire has the shape of this curve between $\left(\frac{1}{3}, 1,2\right)$ and $(9,9,6)$. Find the mass of the wire if the linear mass density is $\delta=3 y z$.
Solution: $\quad|\vec{v}|=t^{2}+2 \quad \delta=3 y z=3 t^{2} 2 t=6 t^{3}$
$M=\int_{(1 / 3,1,2)}^{(9,9,6)} \delta d s=\int_{1}^{3} 3 y z|\vec{v}| d t=\int_{1}^{3} 6 t^{3}\left(t^{2}+2\right) d t=\int_{1}^{3}\left(6 t^{5}+12 t^{3}\right) d t=\left[t^{6}+3 t^{4}\right]_{1}^{3}$ $=\left(3^{6}+3^{5}\right)-(1+3)=968$
$M=$ \qquad
i. (4 pts) A wire has the shape of this curve. Find the work done by the force $\vec{F}=(0, z,-y)$ which pushes a bead along the wire from $\left(\frac{1}{3}, 1,2\right)$ to $(9,9,6)$.
Solution: $\vec{F}=(0, z,-y)=\left(0,2 t,-t^{2}\right) \quad \vec{v}=\left(t^{2}, 2 t, 2\right) \quad \vec{F} \cdot \vec{v}=4 t^{2}-2 t^{2}=2 t^{2}$
$W=\int_{(1 / 3,1,2)}^{(9,9,6)} \vec{F} \cdot d \vec{s}=\int_{1}^{3} \vec{F} \cdot \vec{v} d t=\int_{1}^{3} 2 t^{2} d t=\left[\frac{2 t^{3}}{3}\right]_{1}^{3}=18-\frac{2}{3}=\frac{52}{3}$

$$
W=\frac{52}{3}
$$

