Name						
			1-9	/45	12	/15
MATH 251	Exam 1 Version B	Fall 2020				/
Sections 519		P. Yasskin	10	/5	13	/28
			11	/10	Tatal	/402
Multiple Choice: (5 points each. No part credit.)				/10	Total	/103

- **1**. The points A = (3,2,1) and B = (5,6,5) are the endpoints of the diameter of a sphere. If C = (a,b,c) is the center and r is the radius, what is a + b + c + r?
 - **a**. 40
 - **b**. 31
 - **c**. 29
 - **d**. 20
 - **e**. 14
- **2**. If \vec{u} points NorthWest and \vec{v} points Down, in what direction does $\vec{u} \times \vec{v}$ point?
 - a. SouthEast
 - **b**. SouthWest
 - **c**. NorthWest
 - d. Up
- **3**. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$\vec{F}_1 = \langle -3, 2, 1 \rangle$$
 $\vec{F}_2 = \langle -1, -2, 3 \rangle$

They now apply a 3^{rd} tractor beam with the force, $\vec{F}_3 = \langle a, b, c \rangle$, to keep the pod stationary. What is a + b + c?

- **a**. -8
- **b**. -2
- **c**. 0
- **d**. 2
- **e**. 8

- **4**. The thrusters on the Starship Galileo exert the force $\vec{F} = \langle 4, -2, 1 \rangle$ which moves the ship from P = (1,5,2) to Q = (3,4,5). Find the work done by the thrusters.
 - **a**. *W* = 15
 - **b**. *W* = 13
 - **c**. *W* = 11
 - **d**. W = 9
 - **e**. W = 7
- 5. Find the tangent vector, \vec{v} , to the curve $\vec{r}(t) = (t^3, t^2, t)$ at the point (8,4,2). Then find it dot product with $\vec{F} = \langle 3, 2, 1 \rangle$.
 - **a**. $\vec{F} \cdot \vec{v} = (12, 4, 1)$ **b**. $\vec{F} \cdot \vec{v} = (36, 8, 1)$
 - **c**. $\vec{F} \cdot \vec{v} = 19$
 - **d**. $\vec{F} \cdot \vec{v} = 29$
 - **e**. $\vec{F} \cdot \vec{v} = 45$

6. Which of the following is the graph of the equation $(x-1)^2 + (y-3)^2 - z = 4$?

7. A point has spherical coordinates $(\rho, \phi, \theta) = (\sqrt{2}, \frac{\pi}{6}, \frac{\pi}{4})$. If its rectangular coordinates are (x, y, z), then xyz =

a.
$$\frac{\sqrt{6}}{8}$$

b. $\frac{\sqrt{6}}{4}$
c. $\frac{\sqrt{3}}{4}$
d. $\frac{3\sqrt{2}}{8}$
e. $\frac{3\sqrt{2}}{4}$

- 8. Find the area of the triangle with two edges $\vec{v} = \langle 4, 0, 1 \rangle$ and $\vec{w} = \langle 2, 1, -1 \rangle$.
 - **a**. $A = \frac{1}{2}\sqrt{53}$ **b**. $A = \sqrt{53}$ **c**. $A = \frac{1}{2}\sqrt{54}$ **d**. $A = \sqrt{54}$ **e**. A = 27
- **9**. Find the volume of the parallelepiped with edges $\vec{u} = \langle 2, -3, 1 \rangle$, $\vec{v} = \langle 4, 0, 1 \rangle$ and $\vec{w} = \langle 2, 1, -1 \rangle$.
 - **a**. V = -20
 - **b**. V = -16
 - **c**. V = 8
 - **d**. *V* = 16
 - **e**. *V* = 20

Work Out: (Points indicated. Part credit possible. Show all work.)

- **10**. (5 points) Find a parametric equation of the line which is perpendicular to the plane 3x + 2y z = 4 and passes through the point (3,5,1).
- **11**. (10 points) Find a normal equation of the plane which contains the line (x,y,z) = (3 2t, 2 + t, 2 + 2t) and passes through the point (3,4,1).

$$y + z = 3$$
$$2x + 2y + z = 4$$

- **a**. (4 pts) Find the angle (in degrees) between the planes.
- **b**. (4 pts) Find a direction vector, \vec{v} , for the line of intersection of the planes.
- **c**. (4 pts) Find a point, *P*, on the line of intersection of the planes.
- d. (3 pts) Find a parametric equation for the line of intersection of the planes.

- **13**. (28 points) For the parametric curve $\vec{r}(t) = \left(t^2, \frac{1}{3}t^3, 2t\right)$ compute each of the following: **a**. (3 pts) velocity \vec{v} *v* = _____ **b**. (3 pts) acceleration \vec{a} $\vec{a} =$ _____ **c**. (3 pts) jerk \vec{j} $\vec{j} =$ _____ **d**. (2 pts) speed $|\vec{v}|$ (Simplify!) HINT: The quantity inside the square root is a perfect square. $|\vec{v}| =$ _____ e. (2 pts) tangential acceleration a_T $a_T =$ _____ f. (2 pts) the values of t where the curve passes thru the points $A = \left(1, \frac{1}{3}, 2\right)$ *t* = _____ B = (9, 9, 6)*t* = _____ g. (4 pts) arc length between $(1, \frac{1}{3}, 2)$ and (9, 9, 6)L =h. (4 pts) A wire has the shape of this curve between $\left(1,\frac{1}{3},2\right)$ and (9,9,6). Find the mass of the wire if the linear mass density is $\delta = xz$.
 - i. (4 pts) A wire has the shape of this curve. Find the work done by the force $\vec{F} = (0, z, y)$ which pushes a bead along the wire from $(1, \frac{1}{3}, 2)$ to (9, 9, 6).

W = _____

M = _____