\qquad
MATH 251
Exam 1 Version B
Fall 2020
Sections 519
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-9$	$/ 45$	12	$/ 15$
10	$/ 5$	13	$/ 28$
11	$/ 10$	Total	$/ 103$

1. The points $A=(3,2,1)$ and $B=(5,6,5)$ are the endpoints of the diameter of a sphere. If $C=(a, b, c)$ is the center and r is the radius, what is $a+b+c+r$?
a. 40
b. 31
c. 29
d. 20
e. 14
2. If \vec{u} points NorthWest and \vec{v} points Down, in what direction does $\vec{u} \times \vec{v}$ point?
a. SouthEast
b. SouthWest
c. NorthWest
d. Up
3. The Galactic Federation is trying to keep a stasis pod stationary in intergalactic space where there is no gravity. They already have 2 tractor beams pulling on the pod with the forces

$$
\vec{F}_{1}=\langle-3,2,1\rangle \quad \vec{F}_{2}=\langle-1,-2,3\rangle
$$

They now apply a $3^{\text {rd }}$ tractor beam with the force, $\vec{F}_{3}=\langle a, b, c\rangle$, to keep the pod stationary. What is $a+b+c$?
a. -8
b. -2
c. 0
d. 2
e. 8
4. The thrusters on the Starship Galileo exert the force $\vec{F}=\langle 4,-2,1\rangle$ which moves the ship from $P=(1,5,2)$ to $Q=(3,4,5)$. Find the work done by the thrusters.
a. $W=15$
b. $W=13$
c. $W=11$
d. $W=9$
e. $W=7$
5. Find the tangent vector, \vec{v}, to the curve $\vec{r}(t)=\left(t^{3}, t^{2}, t\right)$ at the point $(8,4,2)$. Then find it dot product with $\vec{F}=\langle 3,2,1\rangle$.
a. $\vec{F} \cdot \vec{v}=(12,4,1)$
b. $\vec{F} \cdot \vec{v}=(36,8,1)$
c. $\vec{F} \cdot \vec{v}=19$
d. $\vec{F} \cdot \vec{v}=29$
e. $\vec{F} \cdot \vec{v}=45$
6. Which of the following is the graph of the equation $(x-1)^{2}+(y-3)^{2}-z=4$?
a

b

d

7. A point has spherical coordinates $(\rho, \phi, \theta)=\left(\sqrt{2}, \frac{\pi}{6}, \frac{\pi}{4}\right)$. If its rectangular coordinates are (x, y, z), then $x y z=$
a. $\frac{\sqrt{6}}{8}$
b. $\frac{\sqrt{6}}{4}$
c. $\frac{\sqrt{3}}{4}$
d. $\frac{3 \sqrt{2}}{8}$
e. $\frac{3 \sqrt{2}}{4}$
8. Find the area of the triangle with two edges $\vec{v}=\langle 4,0,1\rangle$ and $\vec{w}=\langle 2,1,-1\rangle$.
a. $A=\frac{1}{2} \sqrt{53}$
b. $A=\sqrt{53}$
c. $A=\frac{1}{2} \sqrt{54}$
d. $A=\sqrt{54}$
e. $A=27$
9. Find the volume of the parallelepiped with edges $\vec{u}=\langle 2,-3,1\rangle, \vec{v}=\langle 4,0,1\rangle$ and $\vec{w}=\langle 2,1,-1\rangle$.
a. $V=-20$
b. $V=-16$
c. $V=8$
d. $V=16$
e. $V=20$

Work Out: (Points indicated. Part credit possible. Show all work.)
10. (5 points) Find a parametric equation of the line which is perpendicular to the plane $3 x+2 y-z=4$ and passes through the point $(3,5,1)$.
11. (10 points) Find a normal equation of the plane which contains the line $(x, y, z)=(3-2 t, 2+t, 2+2 t)$ and passes through the point $(3,4,1)$.
12. (15 points) Consider the two planes

$$
\begin{array}{r}
y+z=3 \\
2 x+2 y+z=4
\end{array}
$$

a. (4 pts) Find the angle (in degrees) between the planes.
b. (4 pts) Find a direction vector, \vec{v}, for the line of intersection of the planes.
c. (4 pts) Find a point, P, on the line of intersection of the planes.
d. (3 pts) Find a parametric equation for the line of intersection of the planes.
13. (28 points) For the parametric curve $\vec{r}(t)=\left(t^{2}, \frac{1}{3} t^{3}, 2 t\right)$ compute each of the following:
a. (3 pts) velocity \vec{v}

$$
\vec{v}=
$$

b. (3 pts) acceleration \vec{a}

$$
\vec{a}=
$$

c. (3 pts) jerk \vec{j}

$$
\vec{j}=
$$

d. (2 pts) speed $|\vec{v}| \quad$ (Simplify!)

HINT: The quantity inside the square root is a perfect square.

$$
|\vec{v}|=
$$

e. (2 pts) tangential acceleration a_{T}

$$
a_{T}=
$$

f. (2 pts) the values of t where the curve passes thru the points

$$
\begin{aligned}
A & =\left(1, \frac{1}{3}, 2\right) \\
B & =(9,9,6)
\end{aligned}
$$

$$
t=
$$

\qquad

$$
t=
$$

\qquad
g. (4 pts) arc length between $\left(1, \frac{1}{3}, 2\right)$ and $(9,9,6)$

$$
L=
$$

\qquad
h. (4 pts) A wire has the shape of this curve between $\left(1, \frac{1}{3}, 2\right)$ and $(9,9,6)$. Find the mass of the wire if the linear mass density is $\delta=x z$.

$$
M=
$$

\qquad
i. (4 pts) A wire has the shape of this curve. Find the work done by the force $\vec{F}=(0, z, y)$ which pushes a bead along the wire from $\left(1, \frac{1}{3}, 2\right)$ to $(9,9,6)$.

$$
W=
$$

\qquad

