Name \qquad
MATH 251
Exam 2 Version A
Fall 2020
Sections 517
Solutions P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-10$	$/ 50$	12	$/ 18$
11	$/ 12$	13	$/ 20+10 \mathrm{EC}$
		Total	$/ 100+10 \mathrm{EC}$

1. Which of the following is the contour plot for the function whose graph is shown at the right?

a

b

d

Correct Choice

Solution: The graph has 2 ups and 2 downs. So contour plot is (b).
2. Identify the domain and image of the function $w=f(x, y, z)=\ln \left(9-x^{2}-y^{2}-z^{2}\right)$.

Be sure to indicate whether the boundary of any region is included or not.
Enter each answer as an inequality or an interval.
Solution: The domain is the set of points where the function is defined. This function is only defined if the quantity inside the \ln is positive (and not 0). But it is also less than or equal to 9 . So $0<9-x^{2}-y^{2}-z^{2} \leq 9$ So the domain is the set of all points (x, y, z) such that:

$$
0 \leq x^{2}+y^{2}+z^{2}<9
$$

The image is the set of all possible values of the function. The quantity inside the \ln can be any number between 0 and 9 , including 9 but not including 0 . So the image is the set of all numbers w such that:

$$
-\infty<w \leq \ln 9 \quad \text { or } \quad(-\infty, \ln 9]
$$

3. Find the tangent plane to the graph of $z=x^{2} y^{3}$ at the point $(x, y)=(2,1)$. Then find its z-intercept.

Solution:	$f=x^{2} y^{3}$	$f(2,1)=4$	$z=f(2,1)+f_{x}(2,1)(x-1)+f_{y}(2,1)(y-1)$
	$f_{x}=2 x y^{3}$	$f_{x}(2,1)=4$	$z=4+4(x-2)+12(y-1)$
	$f_{y}=3 x^{2} y^{2}$	$f_{y}(2,1)=12$	$z=4 x+12 y-16 \quad z$-intercept $=-16$

4. In the figure at the right, the vertical plane intersects the surface in a curve which is either the x-Trace or the y-Trace. Which is it? The slope of the tangent line to this trace is either the x-Partial Derivative or the y-Partial Derivative. Which is it?

Solution: Since y is constant on this curve, it is the x-Trace and the slope of the tangent is the x-Partial Derivative
5. Suppose $w=w(x, y, z)$ while $x=s^{2}, y=t^{3}$ and $z=s^{3}+t^{2}$, find $\left.\frac{\partial w}{\partial t}\right|_{(1,1)}$ given that

$$
\left.\frac{\partial w}{\partial x}\right|_{(1,1,2)}=\left.3 \quad \frac{\partial w}{\partial y}\right|_{(1,1,2)}=\left.4 \quad \frac{\partial w}{\partial z}\right|_{(1,1,2)}=5
$$

Solution:

$$
\begin{gathered}
\frac{\partial x}{\partial t}=0 \\
\frac{\partial y}{\partial t}=3 t^{2} \quad \frac{\partial z}{\partial t}=2 t \\
\left.\frac{\partial x}{\partial t}\right|_{(1,1)}=\left.0 \quad \frac{\partial y}{\partial t}\right|_{(1,1)}=\left.3 \quad \frac{\partial z}{\partial t}\right|_{(1,1)}=2 \\
\left.\frac{\partial w}{\partial t}\right|_{(1,1)}=\left.\left.\frac{\partial w}{\partial x}\right|_{(1,1,2)} \frac{\partial x}{\partial t}\right|_{(1,1)}+\left.\left.\frac{\partial w}{\partial y}\right|_{(1,1,2)} \frac{\partial y}{\partial t}\right|_{(1,1)}+\left.\left.\frac{\partial w}{\partial z}\right|_{(1,1,2)} \frac{\partial z}{\partial t}\right|_{(1,1)} \\
=3 \cdot 0+4 \cdot 3+5 \cdot 2=22
\end{gathered}
$$

6. The equation $x^{2} z^{3}+y^{3} z^{2}=17$ defines a surface which passes thru the point $(3,2,1)$. This surface implicitly defines a function $z=f(x, y)$ passing through this point. Find $\frac{\partial f}{\partial y}(3,2)$.

Solution: Apply $\frac{\partial}{\partial y}$ to both sides: $3 x^{2} z^{2} \frac{\partial z}{\partial y}+3 y^{2} z^{2}+2 y^{3} z \frac{\partial z}{\partial y}=0$.
We plug in $(x, y, z)=(3,2,1): \quad 27 \frac{\partial z}{\partial y}+12+16 \frac{\partial z}{\partial y}=0 \quad$ and solve $\frac{\partial z}{\partial y}=-\frac{12}{43}$
7. Find the equation of the tangent plane to the hyperboloid $3(x-3)^{2}-(y-2)^{2}-(z-4)^{2}=1$ at the point $(x, y, z)=(2,3,3)$.

Solution: Let $f=3(x-3)^{2}-(y-2)^{2}-(z-4)^{2}$ and $P=(2,3,3)$.
Then $\vec{\nabla} f=\langle 6(x-3),-2(y-2),-2(z-4)\rangle . \quad \vec{N}=\left.\vec{\nabla} f\right|_{(2,3,3)}=\langle-6,-2,2\rangle$
$\vec{N} \cdot X=\vec{N} \cdot P \quad-6 x-2 y+2 z=-6(2)-2(3)+2(3)=-12 \quad 3 x+y-z=6$
8. A cardboard box has length $L=5 \mathrm{~cm}$, width $W=4 \mathrm{~cm}$ and height $H=3 \mathrm{~cm}$. Use the linear approximation to estimate the volume of cardboard used to make this box if the thickness of cardboard on the bottom is 0.8 cm , the thickness of cardboard on the 4 sides is 0.4 cm , and the thickness of cardboard on the top is 0.2 cm .
Note: There are 2 thicknesses of cardboard in each direction.
Solution: The change in the height is the thickness of the top and bottom: $\Delta H=0.8+0.2=1.0$ The change in the length and width is twice the thickness of the sides: $\Delta L=\Delta W=2(0.4)=0.8$

$$
\begin{aligned}
\Delta V & \approx d V=\frac{\partial V}{\partial L} d L+\frac{\partial V}{\partial W} d W+\frac{\partial V}{\partial H} d H=W H d L+L H d W+L W d H \\
& =(4)(3)(0.8)+(5)(3)(0.8)+(5)(4)(1.0)=41.6 \quad \Delta V \approx 41.6
\end{aligned}
$$

9. If 2 resistors with resistances R_{1} and R_{2} are arranged in parallel, then the net resistance R is given by:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Initially, $R_{1}=2 \Omega, R_{2}=4 \Omega$. First find the initial value of R. If R_{1} is increasing at $\frac{d R_{1}}{d t}=0.3 \frac{\Omega}{\sec }$ while R_{2} is decreasing at $\frac{d R_{2}}{d t}=-0.3 \frac{\Omega}{\mathrm{sec}}$, find the rate at which the net resistance is changing $\frac{d R}{d t}$. Be careful to get the sign correct.
Enter exact numbers. For example, $\frac{-0.5}{7}$ should be entered as $-0.5 / 7$, NO SPACES, NO UNITS.

Solution: $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \quad R=\frac{4}{3} \Omega$
$-\frac{1}{R^{2}} \frac{d R}{d t}=-\frac{1}{R_{1}{ }^{2}} \frac{d R_{1}}{d t}-\frac{1}{R_{2}{ }^{2}} \frac{d R_{2}}{d t}$
$\frac{d R}{d t}=\frac{R^{2}}{R_{1}{ }^{2}} \frac{d R_{1}}{d t}+\frac{R^{2}}{R_{2}{ }^{2}} \frac{d R_{2}}{d t}=\frac{16}{9} \frac{1}{4}(0.3)+\frac{16}{9} \frac{1}{16}(-0.3)=\frac{4}{9} 0.3-\frac{1}{9} 0.3=\frac{0.9}{9} \quad \frac{d R}{d t}=0.1 \frac{\Omega}{\sec }$
10. The point $(-4,1)$ is a critical point of the function $g(x, y)=x^{2} y-2 y^{3} x+10 x y$. Apply the $2^{\text {nd }}$-Derivative Test to classify $(-4,1)$.
a. Local Minimum Correct Choice
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test Fails

Solution: $g_{x}=2 x y-2 y^{3}+10 y \quad g_{y}=x^{2}-6 y^{2} x+10 x$
Check critical point: $g_{x}(-4,1)=-8-2+10=0 \quad g_{y}=16+24-40=0$
$g_{x x}=2 y \quad g_{y y}=-12 y x \quad g_{x y}=2 x-6 y^{2}+10$
$g_{x x}(-4,1)=2 \quad g_{y y}(-4,1)=48$
$g_{x y}(-4,1)=-4$
$D=g_{x x} g_{y y}-g_{x y}{ }^{2}=96-16=80$
$D>0 \quad$ and $\quad g_{x x}>0 \quad$ So this is a local minimum.
11. (12 points) Find all $1^{\text {st }}$ and $2^{\text {nd }}$ partial derivatives of $f(x, y)=x^{2} \sin (x y)$.

Enter $f_{y y}$ here but put all of them on your paper.

Solution:	$f_{x}=2 x \sin (x y)+x^{2} y \cos (x y)$	$f_{y}=x^{3} \cos (x y)$
$f_{x x}=2 \sin (x y)+4 x y \cos (x y)-x^{2} y^{2} \sin (x y)$	$f_{x y}=3 x^{2} \cos (x y)-x^{3} y \sin (x y)$	
$f_{y x}=3 x^{2} \cos (x y)-x^{3} y \sin (x y)$	$f_{y y}=-x^{4} \sin (x y)$	

12. (18 points) The ideal gas law says the pressure, P, the density, δ, and the temperature, T, are related by $P=k \delta T$ where k is a constant. A weather balloon measures that at its current position,

$$
P=.81 \mathrm{~atm} \quad \delta=1.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad T=270^{\circ} \mathrm{K}
$$

The weather balloon also measures that gradients of the density and temperature are

$$
\begin{aligned}
& \vec{\nabla} \delta=\left\langle\frac{\partial \delta}{\partial x}, \frac{\partial \delta}{\partial y}, \frac{\partial \delta}{\partial z}\right\rangle=\langle .2, .1,-.2\rangle \frac{\mathrm{kg} / \mathrm{m}^{3}}{\mathrm{~m}} \\
& \vec{\nabla} T=\left\langle\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right\rangle=\langle 3,-12,4\rangle \frac{{ }^{\circ} \mathrm{K}}{\mathrm{~m}}
\end{aligned}
$$

a. (2 pts) Find the constant k.

Solution: $k=\frac{P}{\delta T}=\frac{.81}{1.2 \cdot 270}=\frac{.01}{.4 \cdot 10}=.0025$
b. (9 pts) Find the gradient of the pressure.

HINT: Find each component separately. No need to simplify numbers.
Enter $\frac{\partial P}{\partial x}$ here but put all three components on your paper.
Solution: $\quad \frac{\partial P}{\partial x}=k T \frac{\partial \delta}{\partial x}+k \delta \frac{\partial T}{\partial x}=.0025(270 \cdot .2+1.2 \cdot 3)=0.144$

$$
\begin{aligned}
& \frac{\partial P}{\partial y}=k T \frac{\partial \delta}{\partial y}+k \delta \frac{\partial T}{\partial y}=.0025(270 \cdot .1+1.2 \cdot(-12))=0.0315 \\
& \frac{\partial P}{\partial z}=k T \frac{\partial \delta}{\partial z}+k \delta \frac{\partial T}{\partial z}=.0025(270 \cdot(-.2)+1.2 \cdot 4)=-0.123 \\
& \vec{\nabla} P=\langle 0.144,0.0315,-0.123\rangle
\end{aligned}
$$

c. (3 pts) In the absence of wind or other forces, a balloon will tend to drift from regions of high density to regions of low density. In what unit vector direction, \hat{u}, will this balloon drift?

Solution: The direction from high density to low density is $\vec{u}=-\vec{\nabla} \delta=\langle-.2,-.1, .2\rangle$.
$|\vec{u}|=\sqrt{(.2)^{2}+(.1)^{2}+(.2)^{2}}=\sqrt{.04+.01+.04}=\sqrt{.09}=.3$
$\hat{u}=\frac{\vec{u}}{|\vec{u}|}=\frac{1}{.3}\langle-.2,-.1, .2\rangle=\left\langle-\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right\rangle$
d. (4 pts) If the balloon's current velocity is $\vec{v}=\langle 4,1,3\rangle \frac{m}{\sec }$, find the rate the temperature is changing as seen by the balloon.

Solution: $\quad \frac{d T}{d t}=\vec{v} \cdot \vec{\nabla} T=\langle 4,1,3\rangle \cdot\langle 3,-12,4\rangle=12-12+12=12 \frac{\circ}{\sec }$
13. (20 points +10 points extra credit) A rectangular solid box has 3 faces in the coordinate planes and the remaining vertex on the plane $z=36-3 x-4 y$. Find the dimensions and volume of the largest such box.
NOTE: Solve by either Eliminating a Variable or by Lagrange Multipliers. Extra Credit for solving by both methods. Draw a line across your paper to clearly separate the two solutions.

Solution by Eliminating a Variable: We maximize the volume $V=x y z$ subject to the constraint $z=36-3 x-4 y$. So the volume becomes:

$$
V=x y(36-3 x-4 y)=36 x y-3 x^{2} y-4 x y^{2}
$$

We find the partial derivatives, factor and set them equal to 0 :

$$
\begin{aligned}
& V_{x}=36 y-6 x y-4 y^{2}=y(36-6 x-4 y)=0 \\
& V_{y}=36 x-3 x^{2}-8 x y=x(36-3 x-8 y)=0
\end{aligned}
$$

Since $x=0$ or $y=0$ give 0 volume, we can assume $x \neq 0$ and $y \neq 0$ and solve

$$
\begin{aligned}
& 6 x+4 y=36 \\
& 3 x+8 y=36
\end{aligned}
$$

Twice the first equation minus the second gives $9 x=36$ or $x=4$.
Twice the second equation minus the first gives $12 y=36$ or $y=3$.
Substituting back gives $z=36-3 x-4 y=36-12-12=12$
So the dimensions are $(x, y, z)=(4,3,12)$ and the volume is $\quad V=144$.
Solution by Lagrange Multipliers: We maximize the volume $V=x y z$ subject to the constraint $g=3 x+4 y+z=36$. The gradients are:

$$
\nabla V=(y z, x z, x y) \quad \nabla g=(3,4,1)
$$

So the Lagrange equations are $\nabla C=\lambda \nabla V$ or

$$
y z=\lambda 3 \quad x z=\lambda 4 \quad x y=\lambda
$$

We plug $\lambda=x y$ into the other two equations:

$$
y z=3 x y \quad \text { and } \quad x z=4 x y
$$

These give $z=3 x$ and $z=4 y$. So the constraint becomes

$$
36=3 x+4 y+z=z+z+z=3 z \quad \text { or } \quad z=12
$$

Substiting back, we find $12=3 x=4 y$. So $x=4$ and $y=3$.
So the dimensions are $(x, y, z)=(4,3,12)$ and the volume is $\quad V=144$.

