Name \qquad
MATH 251
Exam 2 Version B
Fall 2020
Sections 519 P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-10$	$/ 50$	12	$/ 18$
11	$/ 12$	13	$/ 20+10 \mathrm{EC}$
		Total	$/ 100+10 \mathrm{EC}$

1. Which of the following is the contour plot for the function whose graph is shown at the right?

a

b

c

d

2. Identify the domain and image of the function $w=f(x, y, z)=\frac{2}{\sqrt{4-x^{2}-y^{2}-z^{2}}}$.

Be sure to say whether the boundary of any region is included or not.
Enter each answer as an inequality or an interval.
3. Find the tangent plane to the graph of $z=x^{3} y^{2}$ at the point $(x, y)=(1,2)$. Then find its z-intercept.
4. In the figure at the right, the vertical plane intersects the surface in a curve which is either the x-Trace or the y-Trace. Which is it? The slope of the tangent line to this trace is either the x-Partial Derivative or the y-Partial Derivative. Which is it?

5. Suppose $w=w(x, y, z)$ while $x=s^{2}, y=t^{3}$ and $z=s^{3}+t^{2}$, find $\left.\frac{\partial w}{\partial s}\right|_{(1,1)}$ given that

$$
\left.\frac{\partial w}{\partial x}\right|_{(1,1,2)}=\left.3 \quad \frac{\partial w}{\partial y}\right|_{(1,1,2)}=\left.4 \quad \frac{\partial w}{\partial z}\right|_{(1,1,2)}=5
$$

6. The equation $x^{2} z^{3}+y^{3} z^{2}=17$ defines a surface which passes thru the point $(3,2,1)$. This surface implicitly defines a function $z=f(x, y)$ passing through this point. Find $\frac{\partial f}{\partial x}(3,2)$.
7. Find the equation of the tangent plane to the hyperboloid $(x-3)^{2}-(y-2)^{2}+(z-4)^{2}=1$ at the point $(x, y, z)=(2,3,3)$.
8. If 2 resistors with resistances R_{1} and R_{2} are arranged in parallel, then the net resistance R is given by:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Initially, $R_{1}=2 \Omega, \quad R_{2}=4 \Omega$. First find the initial value of R. If R_{1} increases by $\Delta R_{1}=0.3 \Omega$ while R_{2} decreases by $\Delta R_{2}=-0.3 \Omega$, use the linear approximation to estimate the change in the net resistance ΔR. Be careful to get the sign correct.
Enter exact numbers. For example, $\frac{-0.5}{7}$ should be entered as $-0.5 / 7$, NO SPACES, NO UNITS.
9. A cardboard box has length $L=5 \mathrm{~cm}$, width $W=4 \mathrm{~cm}$ and height $H=3 \mathrm{~cm}$. If the length is increasing at $\frac{d L}{d t}=0.6 \frac{\mathrm{~cm}}{\mathrm{sec}}$ and the width is decreasing at $\frac{d W}{d t}=-0.3 \frac{\mathrm{~cm}}{\mathrm{sec}}$, while the surface area is held constant, find the rate that the height is changing, $\frac{d H}{d t}$. Be careful to get the sign correct.
HINT: What is the formula for the surface area?
10. The point $(-2,4)$ is a critical point of the function $g(x, y)=x y^{3}-16 x^{2} y-80 x y$. Apply the $2^{\text {nd }}$-Derivative Test to classify $(-2,4)$.
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test Fails
11. (12 points) Find all $1^{\text {st }}$ and $2^{\text {nd }}$ partial derivatives of $f(x, y)=y^{2} \sin (x y)$.

Enter $f_{x x}$ here but put all of them on your paper.
12. (18 points) The ideal gas law says the pressure, P, the density, δ, and the temperature, T, are related by $P=k \delta T$ where k is a constant. A weather balloon measures that at its current position,

$$
P=.81 \mathrm{~atm} \quad \delta=1.5 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad T=270^{\circ} \mathrm{K}
$$

The weather balloon also measures that gradients of the density and temperature are

$$
\begin{aligned}
& \vec{\nabla} \delta=\left\langle\frac{\partial \delta}{\partial x}, \frac{\partial \delta}{\partial y}, \frac{\partial \delta}{\partial z}\right\rangle=\langle-.2, .2,-.1\rangle \frac{\mathrm{kg} / \mathrm{m}^{3}}{\mathrm{~m}} \\
& \vec{\nabla} T=\left\langle\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right\rangle=\langle-3,4,-12\rangle \frac{{ }^{\circ} \mathrm{K}}{\mathrm{~m}}
\end{aligned}
$$

a. (2 pts) Find the constant k.
b. (9 pts) Find the gradient of the pressure.

HINT: Find each component separately. No need to simplify numbers.
Enter $\frac{\partial P}{\partial y}$ here but put all three components on your paper.
c. (4 pts) In the absence of wind or other forces, a balloon will tend to drift from regions of high density to regions of low density. In what unit vector direction, \hat{u}, will this balloon drift?
d. (3 pts) If the balloon's current velocity is $\vec{v}=\langle 4,1,3\rangle \frac{m}{\sec }$, find the rate the temperature is changing as seen by the balloon.
13. (20 points +10 points extra credit) An aquarium has a marble base, a glass front and aluminum sides and back. There is no top. The marble costs $\$.50$ per in^{2}. The glass costs $\$.30$ per in^{2}. The aluminum costs $\$.10$ per in^{2}. Find the dimensions and cost of the aquarium with minimum cost if the volume needs to be $V=5000 \mathrm{in}^{3}$. Let x be the width of the front, left to right. Let y be the width of each side, front to back. Let z be the height, top to bottom.
HINT: Work in cents.
NOTE: Solve by either Eliminating a Variable or by Lagrange Multipliers. Extra Credit for solving by both methods. Draw a line across your paper to clearly separate the two solutions.

Solution by Eliminating a Variable:

Solution by Lagrange Multipliers:

