Name_____

MATH 251

Exam 2 Version B

Fall 2020

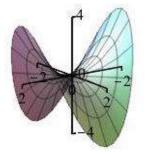
Sections 519

P. Yasskin

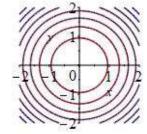
Multiple Choice: (5 points each. No part credit.)

1-10	/50	12	/18
11	/12	13	/20+10EC
		Total	/100+10EC

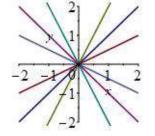
1. Which of the following is the contour plot for the function whose graph is shown at the right?



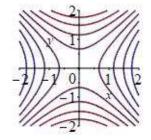
а



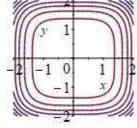
b



С



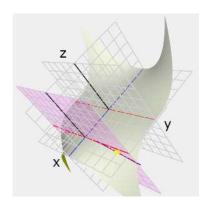
d



2. Identify the domain and image of the function $w = f(x,y,z) = \frac{2}{\sqrt{4 - x^2 - y^2 - z^2}}$.

Be sure to say whether the boundary of any region is included or not. Enter each answer as an inequality or an interval.

- **3**. Find the tangent plane to the graph of $z = x^3y^2$ at the point (x,y) = (1,2). Then find its z-intercept.
- 4. In the figure at the right, the vertical plane intersects the surface in a curve which is either the x-Trace or the y-Trace. Which is it? The slope of the tangent line to this trace is either the x-Partial Derivative or the y-Partial Derivative. Which is it?



- **5.** Suppose w = w(x,y,z) while $x = s^2$, $y = t^3$ and $z = s^3 + t^2$, find $\frac{\partial w}{\partial s}\Big|_{(1,1)}$ given that $\frac{\partial w}{\partial x}\Big|_{(1,1,2)} = 3$ $\frac{\partial w}{\partial y}\Big|_{(1,1,2)} = 4$ $\frac{\partial w}{\partial z}\Big|_{(1,1,2)} = 5$
- **6**. The equation $x^2z^3 + y^3z^2 = 17$ defines a surface which passes thru the point (3,2,1). This surface implicitly defines a function z = f(x,y) passing through this point. Find $\frac{\partial f}{\partial x}(3,2)$.
- 7. Find the equation of the tangent plane to the hyperboloid $(x-3)^2 (y-2)^2 + (z-4)^2 = 1$ at the point (x,y,z) = (2,3,3).
- **8**. If 2 resistors with resistances R_1 and R_2 are arranged in parallel, then the net resistance R is given by:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

Initially, $R_1=2\Omega$, $R_2=4\Omega$. First find the initial value of R. If R_1 increases by $\Delta R_1=0.3\Omega$ while R_2 decreases by $\Delta R_2=-0.3\Omega$, use the linear approximation to estimate the change in the net resistance ΔR . Be careful to get the sign correct.

Enter exact numbers. For example, $\frac{-0.5}{7}$ should be entered as -0.5/7, NO SPACES, NO UNITS.

9. A cardboard box has length $L = 5\,cm$, width $W = 4\,cm$ and height $H = 3\,cm$. If the length is increasing at $\frac{dL}{dt} = 0.6\,\frac{cm}{\mathrm{sec}}$ and the width is decreasing at $\frac{dW}{dt} = -0.3\,\frac{cm}{\mathrm{sec}}$, while the **surface** area is held constant, find the rate that the height is changing, $\frac{dH}{dt}$. Be careful to get the sign correct.

HINT: What is the formula for the surface area?

- **10**. The point (-2,4) is a critical point of the function $g(x,y) = xy^3 16x^2y 80xy$. Apply the 2^{nd} -Derivative Test to classify (-2,4).
 - a. Local Minimum
 - **b**. Local Maximum
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails

- **11**. (12 points) Find all 1^{st} and 2^{nd} partial derivatives of $f(x,y) = y^2 \sin(xy)$. Enter f_{xx} here but put all of them on your paper.
- **12**. (18 points) The ideal gas law says the pressure, P, the density, δ , and the temperature, T, are related by $P = k\delta T$ where k is a constant. A weather balloon measures that at its current position,

$$P = .81 atm \qquad \delta = 1.5 \frac{kg}{m^3} \qquad T = 270^{\circ} K$$

The weather balloon also measures that gradients of the density and temperature are

$$\vec{\nabla}\delta = \left\langle \frac{\partial \delta}{\partial x}, \frac{\partial \delta}{\partial y}, \frac{\partial \delta}{\partial z} \right\rangle = \langle -.2, .2, -.1 \rangle \frac{kg/m^3}{m}$$

$$\vec{\nabla}T = \left\langle \frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z} \right\rangle = \langle -3, 4, -12 \rangle \frac{{}^{\circ}K}{m}$$

- **a**. (2 pts) Find the constant k.
- **b**. (9 pts) Find the gradient of the pressure.

HINT: Find each component separately. No need to simplify numbers.

Enter $\frac{\partial P}{\partial y}$ here but put all three components on your paper.

- **c**. (4 pts) In the absence of wind or other forces, a balloon will tend to drift from regions of high density to regions of low density. In what unit vector direction, \hat{u} , will this balloon drift?
- **d**. (3 pts) If the balloon's current velocity is $\vec{v} = \langle 4, 1, 3 \rangle \frac{m}{\text{sec}}$, find the rate the temperature is changing as seen by the balloon.
- 13. (20 points + 10 points extra credit) An aquarium has a marble base, a glass front and aluminum sides and back. There is no top. The marble costs \$.50 per in^2 . The glass costs \$.30 per in^2 . The aluminum costs \$.10 per in^2 . Find the dimensions and cost of the aquarium with minimum cost if the volume needs to be V = 5000 in^3 . Let x be the width of the front, left to right. Let y be the width of each side, front to back. Let z be the height, top to bottom. HINT: Work in cents.

NOTE: Solve by either Eliminating a Variable or by Lagrange Multipliers. Extra Credit for solving by both methods. Draw a line across your paper to clearly separate the two solutions.

Solution by Eliminating a Variable:

Solution by Lagrange Multipliers: