Name \qquad
MATH 251
Exam 2 Version B
Fall 2020
Sections 519
Solutions
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-10$	$/ 50$	12	$/ 18$
11	$/ 12$	13	$/ 20+10 \mathrm{EC}$
		Total	$/ 100+10 \mathrm{EC}$

1. Which of the following is the contour plot for the function whose graph is shown at the right?

a
 b

C

Correct Choice
Solution: The graph has 2 ups and 2 downs. So contour plot (c).
2. Identify the domain and image of the function $w=f(x, y, z)=\frac{2}{\sqrt{4-x^{2}-y^{2}-z^{2}}}$.

Be sure to say whether the boundary of any region is included or not.
Enter each answer as an inequality or an interval.
Solution: The domain is the set of points where the function is defined. This function is not defined where the denominator is 0 or the quantity in the square root is negative. So the domain is the set of all points (x, y, z) such that:

$$
x^{2}+y^{2}+z^{2}<4
$$

The image is the set of all possible values of the function. The quantity inside the square root can be any number between 0 and 4 , including 4 but not including 0 because then you would be dividing by 0 . So the quotient can be any number between 1 and ∞. So the image is the set of all numbers w such that:

$$
1 \leq w<\infty \quad \text { or } \quad[1, \infty)
$$

3. Find the tangent plane to the graph of $z=x^{3} y^{2}$ at the point $(x, y)=(1,2)$. Then find its z-intercept.

Solution: $f=x^{3} y^{2}$

$$
f(1,2)=4
$$

$$
z=f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2)
$$

$$
f_{x}=3 x^{2} y^{2} \quad f_{x}(1,2)=12
$$

$$
z=4+12(x-1)+4(y-2)
$$

$$
f_{y}=2 x^{3} y \quad f_{y}(1,2)=4
$$

$$
z=12 x+4 y-16 \quad z \text {-intercept }=-16
$$

4. In the figure at the right, the vertical plane intersects the surface in a curve which is either the x-Trace or the y-Trace. Which is it? The slope of the tangent line to this trace is either the x-Partial Derivative or the y-Partial Derivative. Which is it?

Solution: Since x is constant on this curve, it is the y-Trace and the slope of the tangent is the y-Partial Derivative
5. Suppose $w=w(x, y, z)$ while $x=s^{2}, y=t^{3}$ and $z=s^{3}+t^{2}$, find $\left.\frac{\partial w}{\partial s}\right|_{(1,1)}$ given that

$$
\left.\frac{\partial w}{\partial x}\right|_{(1,1,2)}=\left.3 \quad \frac{\partial w}{\partial y}\right|_{(1,1,2)}=\left.4 \quad \frac{\partial w}{\partial z}\right|_{(1,1,2)}=5
$$

Solution:

$$
\begin{aligned}
& \frac{\partial x}{\partial s}=2 s \quad \frac{\partial y}{\partial s}=0 \quad \frac{\partial z}{\partial s}=3 s^{2} \\
& \left.\frac{\partial x}{\partial s}\right|_{(1,1)}=\left.2 \quad \frac{\partial y}{\partial s}\right|_{(1,1)}=\left.0 \quad \frac{\partial z}{\partial s}\right|_{(1,1)}=3 \\
& \left.\frac{\partial w}{\partial s}\right|_{(1,1)}=\left.\left.\frac{\partial w}{\partial x}\right|_{(1,1,2)} \frac{\partial x}{\partial s}\right|_{(1,1)}+\left.\left.\frac{\partial w}{\partial y}\right|_{(1,1,2)} \frac{\partial y}{\partial s}\right|_{(1,1)}+\left.\left.\frac{\partial w}{\partial z}\right|_{(1,1,2)} \frac{\partial z}{\partial s}\right|_{(1,1)} \\
& =3 \cdot 2+4 \cdot 0+5 \cdot 3=21
\end{aligned}
$$

6. The equation $x^{2} z^{3}+y^{3} z^{2}=17$ defines a surface which passes thru the point $(3,2,1)$. This surface implicitly defines a function $z=f(x, y)$ passing through this point. Find $\frac{\partial f}{\partial x}(3,2)$.

Solution: Apply $\frac{\partial}{\partial x}$ to both sides: $2 x z^{3}+3 x^{2} z^{2} \frac{\partial z}{\partial x}+2 y^{3} z \frac{\partial z}{\partial x}=0$.
We plug in $(x, y, z)=(3,2,1): \quad 6+27 \frac{\partial z}{\partial x}+16 \frac{\partial z}{\partial x}=0$ and solve $\frac{\partial z}{\partial x}=-\frac{6}{43}$
7. Find the equation of the tangent plane to the hyperboloid $(x-3)^{2}-(y-2)^{2}+(z-4)^{2}=1$ at the point $(x, y, z)=(2,3,3)$.

Solution: Let $f=(x-3)^{2}-(y-2)^{2}+(z-4)^{2}$ and $P=(2,3,3)$.
Then $\vec{\nabla} f=\langle 2(x-3),-2(y-2), 2(z-4)\rangle . \quad \vec{N}=\left.\vec{\nabla} f\right|_{(2,3,3)}=\langle-2,-2,-2\rangle$
$\vec{N} \cdot X=\vec{N} \cdot P \quad-2 x-2 y-2 z=-2(2)-2(3)-2(3)=-16 \quad x+y+z=8$
8. If 2 resistors with resistances R_{1} and R_{2} are arranged in parallel, then the net resistance R is given by:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Initially, $R_{1}=2 \Omega, \quad R_{2}=4 \Omega$. First find the initial value of R. If R_{1} increases by $\Delta R_{1}=0.3 \Omega$ while R_{2} decreases by $\Delta R_{2}=-0.3 \Omega$, use the linear approximation to estimate the change in the net resistance ΔR. Be careful to get the sign correct.
Enter exact numbers. For example, $\frac{-0.5}{7}$ should be entered as $-0.5 / 7$, NO SPACES, NO UNITS.

Solution: $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \quad R=\frac{4}{3} \Omega$ $-\frac{1}{R^{2}} \Delta R=-\frac{1}{R_{1}{ }^{2}} \Delta R_{1}-\frac{1}{R_{2}{ }^{2}} \Delta R_{2}$
$\Delta R=\frac{R^{2}}{R_{1}{ }^{2}} \Delta R_{1}+\frac{R^{2}}{R_{2}{ }^{2}} \Delta R_{2}=\frac{16}{9} \frac{1}{4}(0.3)+\frac{16}{9} \frac{1}{16}(-0.3)=\frac{4}{9} 0.3-\frac{1}{9} 0.3=\frac{0.9}{9} \quad \Delta R=0.1 \Omega$
9. A cardboard box has length $L=5 \mathrm{~cm}$, width $W=4 \mathrm{~cm}$ and height $H=3 \mathrm{~cm}$. If the length is increasing at $\frac{d L}{d t}=0.6 \frac{\mathrm{~cm}}{\mathrm{sec}}$ and the width is decreasing at $\frac{d W}{d t}=-0.3 \frac{\mathrm{~cm}}{\mathrm{sec}}$, while the surface area is held constant, find the rate that the height is changing, $\frac{d H}{d t}$. Be careful to get the sign correct.
HINT: What is the formula for the surface area?
Solution: $A=2 L W+2 L H+2 W H$

$$
\begin{aligned}
\frac{d A}{d t} & =\frac{\partial A}{\partial L} \frac{d L}{d t}+\frac{\partial A}{\partial W} \frac{d W}{d t}+\frac{\partial A}{\partial H} \frac{d H}{d t}=(2 W+2 H) \frac{d L}{d t}+(2 L+2 H) \frac{d W}{d t}+(2 L+2 W) \frac{d H}{d t} \\
0 & =14(0.6)+16(-0.3)+18 \frac{d H}{d t}=3.6+18 \frac{d H}{d t} \quad \frac{d H}{d t} \approx-0.2 \frac{c m}{\sec }
\end{aligned}
$$

10. The point $(-2,4)$ is a critical point of the function $g(x, y)=x y^{3}-16 x^{2} y-80 x y$. Apply the $2^{\text {nd }}$-Derivative Test to classify $(-2,4)$.
a. Local Minimum
b. Local Maximum Correct Choice
c. Inflection Point
d. Saddle Point
e. Test Fails

Solution: $g_{x}=y^{3}-32 x y-80 y \quad g_{y}=3 x y^{2}-16 x^{2}-80 x$
Check critical point: $g_{x}(-2,4)=64+256-320=0 \quad g_{y}(-2,4)=-96-64+160=0$
$g_{x x}=-32 y \quad g_{y y}=6 x y \quad g_{x y}=3 y^{2}-32 x-80$
$g_{x x}(-2,4)=-128 \quad g_{y y}(-2,4)=-48 \quad g_{x y}(-2,4)=48+64-80=32$
$D=g_{x x} g_{y y}-g_{x y}{ }^{2}=128 \cdot 48-32^{2}=5120$
$D>0 \quad$ and $\quad g_{x x}<0 \quad$ So this is a local maximum.
11. (12 points) Find all $1^{\text {st }}$ and $2^{\text {nd }}$ partial derivatives of $f(x, y)=y^{2} \sin (x y)$.

Enter $f_{x x}$ here but put all of them on your paper.

$$
\begin{aligned}
& f_{y}=2 y \sin (x y)+x y^{2} \cos (x y) \\
& \hline f_{x y}=3 y^{2} \cos (x y)-x y^{3} \sin (x y) \\
& f_{y y}=2 \sin (x y)+4 x y \cos (x y)-x^{2} y^{2} \sin (x y) \\
& \hline
\end{aligned}
$$

12. (18 points) The ideal gas law says the pressure, P, the density, δ, and the temperature, T, are related by $P=k \delta T$ where k is a constant. A weather balloon measures that at its current position,

$$
P=.81 \mathrm{~atm} \quad \delta=1.5 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad T=270^{\circ} \mathrm{K}
$$

The weather balloon also measures that gradients of the density and temperature are

$$
\begin{aligned}
& \vec{\nabla} \delta=\left\langle\frac{\partial \delta}{\partial x}, \frac{\partial \delta}{\partial y}, \frac{\partial \delta}{\partial z}\right\rangle \\
& \vec{\nabla} T=\langle-.2, .2,-.1\rangle \frac{\mathrm{kg} / \mathrm{m}^{3}}{\mathrm{~m}} \\
&\left.\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right\rangle=\langle-3,4,-12\rangle \frac{{ }^{\circ} \mathrm{K}}{\mathrm{~m}}
\end{aligned}
$$

a. (2 pts) Find the constant k.

Solution: $k=\frac{P}{\delta T}=\frac{.81}{1.5 \cdot 270}=\frac{.01}{.5 \cdot 10}=.002$
b. (9 pts) Find the gradient of the pressure.

HINT: Find each component separately. No need to simplify numbers.
Enter $\frac{\partial P}{\partial y}$ here but put all three components on your paper.
Solution: $\quad \frac{\partial P}{\partial x}=k T \frac{\partial \delta}{\partial x}+k \delta \frac{\partial T}{\partial x}=.002(270 \cdot(-.2)+1.5 \cdot(-3))=-0.117$

$$
\begin{aligned}
& \frac{\partial P}{\partial y}=k T \frac{\partial \delta}{\partial y}+k \delta \frac{\partial T}{\partial y}=.002(270 \cdot .2+1.5 \cdot 4)=0.12 \\
& \frac{\partial P}{\partial z}=k T \frac{\partial \delta}{\partial z}+k \delta \frac{\partial T}{\partial z}=.002(270 \cdot(-.1)+1.5 \cdot(-12))=-0.09 \\
& \vec{\nabla} P=\langle-0.117,0.12,-0.09\rangle
\end{aligned}
$$

c. (3 pts) In the absence of wind or other forces, a balloon will tend to drift from regions of high density to regions of low density. In what unit vector direction, \hat{u}, will this balloon drift?

Solution: The direction from high density to low density is $\vec{u}=-\vec{\nabla} \delta=\langle .2,-.2, .1\rangle$.
$|\vec{u}|=\sqrt{(.2)^{2}+(.2)^{2}+(.1)^{2}}=\sqrt{.04+.04+.01}=\sqrt{.09}=.3$
$\hat{u}=\frac{\vec{u}}{|\vec{u}|}=\frac{1}{.3}\langle\cdot 2,-.2, .1\rangle=\left\langle\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right\rangle$
d. (4 pts) If the balloon's current velocity is $\vec{v}=\langle 4,1,3\rangle \frac{m}{\sec }$, find the rate the temperature is changing as seen by the balloon.

Solution: $\quad \frac{d T}{d t}=\vec{v} \cdot \vec{\nabla} T=\langle 4,1,3\rangle \cdot\langle-3,4,-12\rangle=-12+4-36=-44 \frac{{ }^{\circ} K}{\sec }$
13. (20 points +10 points extra credit) An aquarium has a marble base, a glass front and aluminum sides and back. There is no top. The marble costs $\$.50$ per in^{2}. The glass costs $\$.30$ per in^{2}. The aluminum costs $\$.10$ per in^{2}. Find the dimensions and cost of the aquarium with minimum cost if the volume needs to be $V=5000 \mathrm{in}^{3}$. Let x be the width of the front, left to right. Let y be the width of each side, front to back. Let z be the height, top to bottom.
HINT: Work in cents.
NOTE: Solve by either Eliminating a Variable or by Lagrange Multipliers. Extra Credit for solving by both methods. Draw a line across your paper to clearly separate the two solutions.

Solution by Eliminating a Variable: Minimize the cost, written in cents:

$$
C=50 x y+30 x z+10 y z+10 y z+10 x z=50 x y+40 x z+20 y z
$$

subject to the constraint $V=x y z=5000$. We solve the constraint: $z=\frac{5000}{x y}$ and plug into the cost:

$$
C=50 x y+40 x \frac{5000}{x y}+20 y \frac{5000}{x y}=50 x y+\frac{200,000}{y}+\frac{100,000}{x}
$$

We set the partial derivatives equal to zero and solve:

$$
\begin{array}{lll}
C_{x}=50 y-\frac{100,000}{x^{2}}=0 & \Rightarrow & y=\frac{2000}{x^{2}} \\
C_{y}=50 x-\frac{200,000}{y^{2}}=0 & \Rightarrow & x=\frac{4000}{y^{2}}
\end{array}
$$

We substitute the first into the second:

$$
\begin{aligned}
x & =4000\left(\frac{x^{2}}{2000}\right)^{2}=\frac{x^{4}}{1000} \quad \Rightarrow \quad x^{3}=1000 \quad \Rightarrow \quad x=10 \\
& \Rightarrow \quad y=\frac{2000}{x^{2}}=20 \quad \Rightarrow \quad z=\frac{5000}{x y}=\frac{5000}{200}=25
\end{aligned}
$$

Then the cost in cents is:

$$
C=50 x y+40 x z+20 y z=50(10)(20)+40(10)(25)+20(20)(25)=30000
$$

So the dimensions are $(x, y, z)=(10,20,25)$ and the cost is $C=\$ 300$.
Solution by Lagrange Multipliers: Minimize the cost, written in cents:

$$
C=50 x y+30 x z+10 y z+10 y z+10 x z=50 x y+40 x z+20 y z
$$

subject to the constraint $V=x y z=5000$. The gradients are:

$$
\nabla C=(50 y+40 z, 50 x+20 z, 40 x+20 y) \quad \nabla V=(y z, x z, x y)
$$

The Lagrange equations are $\nabla C=\lambda \nabla V$ or

$$
50 y+40 z=\lambda y z \quad 50 x+20 z=\lambda x z \quad 40 x+20 y=\lambda x y
$$

If we multiply the $1^{s t}$ equation by x, the $2^{\text {nd }}$ by y and the $3^{r d}$ by z, the right sides all become the same. So we can equate the left sides.

$$
\lambda x y z=\quad 50 x y+40 x z=50 x y+20 y z=40 x z+20 y z
$$

Equating the $1^{\text {st }}$ and $2^{\text {nd }}$ and then the $2^{\text {nd }}$ and $3^{r d}$, we get:

$$
\begin{aligned}
50 x y+40 x z=50 x y+20 y z & \Rightarrow \\
50 x z=20 y z & \Rightarrow \quad 40 x=20 y \quad \\
50 x y+20 y z=40 x z+20 y z & \Rightarrow \quad 50 x y=40 x z \quad
\end{aligned} \quad \Rightarrow \quad 50 y=40 z \quad \Rightarrow \quad x=\frac{1}{2} y y \quad z=\frac{5}{4} y
$$

Then the constraint $x y z=5000$ implies: $\frac{1}{2} y y \frac{5}{4} y=5000$ or $y^{3}=8000$ or $y=20$.
So $x=\frac{1}{2} y=10$ and $z=\frac{5}{4} y=25$. Then the cost in cents is:

$$
C=50 x y+40 x z+20 y z=50(10)(20)+40(10)(25)+20(20)(25)=30000
$$

So the dimensions are $(x, y, z)=(10,20,25)$ and the cost is $C=\$ 300$.

