Name						
			1-9	/45	11	/20
MATH 251	Final Exam Version A	Fall 2020		10.0	10	(0.0
Sections 517/519		P. Yasskin	10	/20	12	/20
Multiple Choice: (5 points each. No part credit.)					Total	/105

1. Compute $\int_{0}^{2} \int_{0}^{z} \int_{0}^{xz} 30x \, dy \, dx \, dz$.

- **a**. 4
- **b**. 8
- **c**. 16
- **d**. 32
- **e**. 64

2. Find the center of mass of the quarter circle $x^2 + y^2 \le 9$ in the first quadrant,

if the density is $\delta = \sqrt{x^2 + y^2}$.

- **a.** $(\bar{x}, \bar{y}) = \left(\frac{9}{4}, \frac{9}{4}\right)$ **b.** $(\bar{x}, \bar{y}) = \left(\frac{9}{2}, \frac{9}{2}\right)$ **c.** $(\bar{x}, \bar{y}) = \left(\frac{2}{9}, \frac{2}{9}\right)$ **d.** $(\bar{x}, \bar{y}) = \left(\frac{9}{2\pi}, \frac{9}{2\pi}\right)$ **e.** $(\bar{x}, \bar{y}) = \left(\frac{2\pi}{9}, \frac{2\pi}{9}\right)$
- **3**. The temperature in an ideal gas is given by $T = \kappa \frac{P}{\delta}$ where κ is a constant, P is the pressure and δ is the density. At a certain point Q = (3, 2, 1), we have

$$P(Q) = 8$$
 $\vec{\nabla}P(Q) = (4, -2, -4)$
 $\delta(Q) = 2$ $\vec{\nabla}\delta(Q) = (-1, 4, 2)$

So at the point Q, the temperature is $T(Q) = 4\kappa$ and its gradient is $\vec{\nabla}T(Q) =$

a. $\kappa(-8.5, 6, 9)$ b. $\kappa(4, -9, -6)$ c. $\kappa(3, 2, -2)$ d. $\kappa\left(\frac{1}{2}, 2\right)$ e. $\kappa\left(-\frac{1}{2}, 2\right)$

- **4**. Compute $\iint_C e^{-x^2-y^2} dx dy$ over the disk enclosed in the circle $x^2 + y^2 = 4$.
 - **a**. $\frac{\pi}{2}(1 e^{-4})$ **b**. $\pi(1 - e^{-4})$ **c**. $\frac{\pi}{2}e^{-4}$
 - **d**. πe^{-4}
 - **e**. $2\pi e^{-4}$
- **5**. Find the volume below z = xy above the region between the curves y = 3x and $y = x^2$.
 - **a**. $\frac{81}{2}$ **b**. $\frac{81}{4}$ **c**. $\frac{81}{8}$ **d**. $\frac{243}{2}$
 - **e**. $\frac{243}{8}$
- 6. Compute the line integral $\int_{P} \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = \langle y, x \rangle$ along the parabola $y = x^2$ from x = -1 to x = 2. HINT: Find a scalar potential.
 - **a**. 9
 - **b**. 7
 - **c**. 5
 - **d**. 3
 - **e**. 1

7. Compute $\iint \frac{1}{y} dS$ on the parametric surface $\vec{R}(u,v) = (u^2 - v^2, u^2 + v^2, 2uv)$ for $1 \le u \le 3$ and $1 \le v \le 4$. HINT: Find the normal vector.

- **a**. 6√2
- **b**. $12\sqrt{2}$
- **c**. $24\sqrt{2}$
- **d**. $64\sqrt{2}$
- **e**. $272\sqrt{2}$

8. Compute $\oint (2x \sin y - 5y) dx + (x^2 \cos y - 4x) dy$ counterclockwise around the cross shown. HINT: Use Green's Theorem.

- **a**. -45
- **b**. -10
- **c**. 5
- **d**. 10
- **e**. 45

9. Compute
$$\iint \vec{F} \cdot d\vec{S}$$
 for $\vec{F} = (xy^2, yx^2, z(x^2 + y^2))$

over the complete surface of the solid above the paraboloid $z = x^2 + y^2$ below the plane z = 4, oriented outward. Note: The paraboloid may be parametrized by

 $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$

Hint: Use a Theorem.

a.
$$\frac{64}{5}\pi$$

b. $\frac{64}{2}\pi$

c.
$$\frac{15}{15}$$
^{*n*}

d.
$$\frac{256}{15}\pi$$

e.
$$\frac{256}{3}\pi$$

Work Out: (Points indicated. Part credit possible. Show all work.)

- **10**. (20 points) Consider the surface which is the graph of the equation $xy z^2 = 5$. Letter the parts. Box your answers.
 - **a**. Find the normal vector to the surface at the point P = (3, 2, 1).
 - **b**. Find the standard equation of the tangent plane to the surface at the point P = (3, 2, 1). Then find its *z*-intercept.
 - **c**. Find the parametric equation of the normal line to the surface at the point P = (3, 2, 1). Then find where the normal line intersects the *xy*-plane.
- 11. (20 points) Find the point in the first octant on the graph of $z = \frac{8}{x^2y}$ closest to the origin.

What is its distance from the origin? Box your answers.

12. (20 points) Verify Stokes' Theorem $\iint_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial P} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = \langle -yz, xz, z^2 \rangle$ and the paraboloid $z = x^2 + y^2$ for $z \le 9$ oriented down and out.

Be sure to check and explain the orientations. Use the following steps. Letter the parts. Box your answers.

LHS:

- **a**. Compute the curl $\vec{\nabla} \times \vec{F}$ in rectangular coordinates.
- **b**. The paraboloid surface, *P*, may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$. What is $\vec{\nabla} \times \vec{F}$ on the paraboloid?
- **d**. Compute the integral $\iint_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$.

RHS:

- e. The circle, *C*, at the top of the paraboloid may be parametrized by $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta, 9)$. What is \vec{F} on the circle?
- f. What is the tangent vector to the circle?
- **g**. Compute the integral $\oint_{\partial P} \vec{F} \cdot d\vec{s}$.