Name \qquad
MATH 251
Final Exam Version A
Fall 2020
Sections 517/519
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-9$	$/ 45$	11	$/ 20$
10	$/ 20$	12	$/ 20$
		Total	$/ 105$

1. Compute $\int_{0}^{2} \int_{0}^{z} \int_{0}^{x z} 30 x d y d x d z$.
a. 4
b. 8
c. 16
d. 32
e. 64
2. Find the center of mass of the quarter circle $x^{2}+y^{2} \leq 9$ in the first quadrant, if the density is $\delta=\sqrt{x^{2}+y^{2}}$.
a. $(\bar{x}, \bar{y})=\left(\frac{9}{4}, \frac{9}{4}\right)$
b. $(\bar{x}, \bar{y})=\left(\frac{9}{2}, \frac{9}{2}\right)$
c. $(\bar{x}, \bar{y})=\left(\frac{2}{9}, \frac{2}{9}\right)$
d. $(\bar{x}, \bar{y})=\left(\frac{9}{2 \pi}, \frac{9}{2 \pi}\right)$
e. $(\bar{x}, \bar{y})=\left(\frac{2 \pi}{9}, \frac{2 \pi}{9}\right)$
3. The temperature in an ideal gas is given by $T=\kappa \frac{P}{\delta}$ where κ is a constant, P is the pressure and δ is the density. At a certain point $Q=(3,2,1)$, we have

$$
\begin{array}{ll}
P(Q)=8 & \vec{\nabla} P(Q)=(4,-2,-4) \\
\delta(Q)=2 & \vec{\nabla} \delta(Q)=(-1,4,2)
\end{array}
$$

So at the point Q, the temperature is $T(Q)=4 \kappa$ and its gradient is $\vec{\nabla} T(Q)=$
a. $\kappa(-8.5,6,9)$
b. $\kappa(4,-9,-6)$
c. $\kappa(3,2,-2)$
d. $\kappa\left(\frac{1}{2}, 2\right)$
e. $\kappa\left(-\frac{1}{2}, 2\right)$
4. Compute $\iint_{C} e^{-x^{2}-y^{2}} d x d y$ over the disk enclosed in the circle $x^{2}+y^{2}=4$.
a. $\frac{\pi}{2}\left(1-e^{-4}\right)$
b. $\pi\left(1-e^{-4}\right)$
c. $\frac{\pi}{2} e^{-4}$
d. πe^{-4}
e. $2 \pi e^{-4}$
5. Find the volume below $z=x y$ above the region between the curves $y=3 x$ and $y=x^{2}$.
a. $\frac{81}{2}$
b. $\frac{81}{4}$
c. $\frac{81}{8}$
d. $\frac{243}{2}$
e. $\frac{243}{8}$
6. Compute the line integral $\int_{P} \vec{F} \cdot d \vec{s}$ for the vector field $\vec{F}=\langle y, x\rangle$ along the parabola $y=x^{2}$ from $x=-1$ to $x=2$.
HINT: Find a scalar potential.
a. 9
b. 7
c. 5
d. 3
e. 1
7. Compute $\iint \frac{1}{y} d S$ on the parametric surface $\vec{R}(u, v)=\left(u^{2}-v^{2}, u^{2}+v^{2}, 2 u v\right)$ for $1 \leq u \leq 3$ and $1 \leq v \leq 4$.
HINT: Find the normal vector.
a. $6 \sqrt{2}$
b. $12 \sqrt{2}$
c. $24 \sqrt{2}$
d. $64 \sqrt{2}$
e. $272 \sqrt{2}$
8. Compute $\oint(2 x \sin y-5 y) d x+\left(x^{2} \cos y-4 x\right) d y$ counterclockwise around the cross shown.
HINT: Use Green's Theorem.
a. -45
b. -10
c. 5
d. 10
e. 45
9. Compute $\iint \vec{F} \cdot d \vec{S}$ for $\vec{F}=\left(x y^{2}, y x^{2}, z\left(x^{2}+y^{2}\right)\right)$ over the complete surface of the solid above the paraboloid $z=x^{2}+y^{2}$ below the plane $z=4$, oriented outward.
Note: The paraboloid may be parametrized by

$$
\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)
$$

Hint: Use a Theorem.

a. $\frac{64}{5} \pi$
b. $\frac{64}{3} \pi$
c. $\frac{64}{15} \pi$
d. $\frac{256}{15} \pi$
e. $\frac{256}{3} \pi$

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (20 points) Consider the surface which is the graph of the equation $x y-z^{2}=5$. Letter the parts. Box your answers.
a. Find the normal vector to the surface at the point $P=(3,2,1)$.
b. Find the standard equation of the tangent plane to the surface at the point $P=(3,2,1)$. Then find its z-intercept.
c. Find the parametric equation of the normal line to the surface at the point $P=(3,2,1)$. Then find where the normal line intersects the $x y$-plane.
11. (20 points) Find the point in the first octant on the graph of $z=\frac{8}{x^{2} y}$ closest to the origin. What is its distance from the origin? Box your answers.
12. (20 points) Verify Stokes' Theorem $\iint_{P} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}=\oint_{\partial P} \vec{F} \cdot d \vec{s}$ for the vector field $\vec{F}=\left\langle-y z, x z, z^{2}\right\rangle$ and the paraboloid $z=x^{2}+y^{2}$ for $z \leq 9$ oriented down and out.

Be sure to check and explain the orientations. Use the following steps.
Letter the parts. Box your answers.

LHS:

a. Compute the curl $\vec{\nabla} \times \vec{F}$ in rectangular coordinates.
b. The paraboloid surface, P, may be paranmetrized by $\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)$. What is $\vec{\nabla} \times \vec{F}$ on the paraboloid?
c. Find the normal to the paraboloid.
d. Compute the integral $\iint_{P} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$.

RHS:

e. The circle, C, at the top of the paraboloid may be parametrized by $\vec{r}(\theta)=(3 \cos \theta, 3 \sin \theta, 9)$. What is \vec{F} on the circle?
f. What is the tangent vector to the circle?
g. Compute the integral $\oint_{\partial P} \vec{F} \cdot d \vec{s}$.

