Name_____

MATH 251

Final Exam Version B

Fall 2020

Sections 517/519

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-9	/45	11	/20
10	/20	12	/20
		Total	/105

1. Compute $\int_{1}^{2} \int_{1/y}^{1} y e^{xy} dx dy.$

a.
$$e^2 - 2e$$

b.
$$e^2 - e$$

c.
$$e^2 - 2e - 1$$

d.
$$e^2 - e - 1$$

e.
$$e^2 - 2$$

2. Find the center of mass of the half circle $x^2 + y^2 \le 9$ with $y \ge 0$,

if the density is $\delta = \sqrt{x^2 + y^2}$.

a.
$$(\bar{x}, \bar{y}) = \left(0, \frac{9}{4}\right)$$

b.
$$(\bar{x}, \bar{y}) = (0, \frac{2}{9})$$

c.
$$(\bar{x}, \bar{y}) = (0, \frac{9}{2})$$

d.
$$(\bar{x}, \bar{y}) = (0, \frac{2\pi}{9})$$

e.
$$(\bar{x}, \bar{y}) = \left(0, \frac{9}{2\pi}\right)$$

3. Ham Deut is flying the Millennium Eagle through a dangerous zenithon field whose density is $\rho = xyz$. If his current position is (x,y,z) = (1,-1,2), in what **unit** vector direction should he travel to **decrease** the density as fast as possible?

a.
$$(2,-2,1)$$

b.
$$\left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$$

c.
$$(-2,2,-1)$$

d.
$$\left(\frac{-2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$$

e.
$$\left(\frac{-2}{3}, \frac{-2}{3}, \frac{-1}{3}\right)$$

4. Compute $\int_0^8 \int_{x^{1/3}}^2 \cos(y^2) \, dy \, dx$

HINT: Reverse the order of integration.

- **a**. $\frac{1}{4}\sin(4) \frac{1}{4}$
- **b**. $\frac{1}{4}\sin(16) \frac{1}{4}$
- **c**. $\frac{1}{4}\sin(16)$
- **d**. $\frac{1}{4}\sin(64) \frac{1}{4}$
- **e**. $\frac{1}{4}\sin(64)$
- **5**. Find the volume below z=y above the region between the *x*-axis and the upper half of the cardioid $r=1-\cos\theta$.

- **a**. $\frac{1}{12}$
- **b**. $\frac{1}{6}$
- **c**. $\frac{2}{3}$
- **d**. $\frac{4}{3}$
- **e**. $\frac{8}{3}$
- **6**. Compute the line integral $\int \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = (2x, 2y, 2z)$ along the curve $\vec{r}(t) = \left(\frac{2}{t}, \frac{4}{t}, \frac{6}{t}\right)$ from (2,4,6) to (1,2,3).

HINT: Find a scalar potential.

- **a**. -70
- **b**. -42
- **c**. 0
- **d**. 42
- **e**. 70

- **7**. Find the area of the piece of the surface z = xy above the semicircle $x^2 + y^2 \le 9$ for $y \ge 0$. Parametrize the surface as $\vec{R}(u,v) = (u,v,uv)$. HINT: Find the normal vector.
 - **a**. $\frac{\pi}{3}(10^{3/2}-1)$
 - **b**. $\frac{2\pi}{3}(10^{3/2}-1)$
 - **c**. 9π
 - **d**. 18π
 - **e**. 36π
- 8. Compute $\oint \vec{F} \cdot d\vec{s} = \oint P dx + Q dy$ for $\vec{F} = (P,Q) = (\sec(x^3) 5y, \cos(y^5) + 3x)$ counterclockwise around the triangle with vertices (0,0), (8,0) and (0,4). Hint: Use Green's Theorem.
 - **a**. 12
 - **b**. 16
 - **c**. 32
 - **d**. 64
 - **e**. 128
- 9. Compute $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ over the cone $z = \sqrt{x^2 + y^2}$ for $z \le 4$ oriented down and out for $\vec{F} = (y\sqrt{z}, -x\sqrt{z}, \sqrt{z})$. Note: The cone may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$. Hint: Use a Theorem.

- **a**. 4
- **b**. 8π
- **c**. 16
- **d**. 32
- **e**. 64π

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (20 points) Consider the surface which is the graph of the equation xy - xz + yz = 11. Letter the parts. Box your answers.

- **a**. Find the normal vector to the surface at the point P = (3,2,1).
- **b**. Find the standard equation of the tangent plane to the surface at the point P = (3,2,1). Then find its *z*-intercept.
- **c**. Find the parametric equation of the normal line to the surface at the point P = (3,2,1). Then find where the normal line intersects the *xy*-plane.
- 11. (20 points) The temperature around a candle is given by $T = 110 x^2 y^2 2z^2$.

Find the maximum temperature on the plane 4x + 6y + 8z = 42 and the point where it occur.

Box your answers.

12. (20 points) Verify Gauss' Theorem
$$\iiint\limits_V \vec{\nabla} \cdot \vec{F} \, dV = \iint\limits_{\partial V} \vec{F} \cdot d\vec{S}$$

for the vector field
$$\vec{F} = \langle xz^2, yz^2, x^2 + y^2 \rangle$$
 and

the volume inside the hemisphere
$$H: 0 \le z \le \sqrt{4 - x^2 - y^2}$$

Be sure to check and explain the orientations. Use the following steps.

Letter the parts. Box your answers.

LHS:

- **a**. Compute the divergence $\vec{\nabla} \cdot \vec{F}$ in rectangular coordinates.
- **b**. What coordinate system will you use to compute the integral $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV$? What is $\vec{\nabla} \cdot \vec{F}$ in those coordinates? What is dV in those coordinates?
- **c**. Compute the integral $\iiint_V \vec{\nabla} \cdot \vec{F} dV$.

RHS:

- **d**. The disk at the bottom, D, may be parametrized as $\vec{R}=(r\cos\theta,r\sin\theta,0)$. What is \vec{F} on the disk?
- e. Find the normal to the disk.
- **f.** Compute $\iint_D \vec{F} \cdot d\vec{S}$
- **g**. The hemisphere, H, may be parametrize as $\vec{R}(\varphi,\theta) = (2\sin\varphi\cos\theta, 2\sin\varphi\sin\theta, 2\cos\varphi)$. What is \vec{F} on the hemisphere?
- h. Find the normal to the hemisphere.

i. Compute
$$\iint_H \vec{F} \cdot d\vec{S}$$
. HINT: What is $\int_0^{\pi/2} \cos^n \varphi \sin \varphi \, d\varphi$?

j. Combine
$$\iint_D \vec{F} \cdot d\vec{S}$$
 and $\iint_H \vec{F} \cdot d\vec{S}$ to get $\iint_{\partial V} \vec{F} \cdot d\vec{S}$.