MATH 304 Linear Algebra

Lecture 3: Applications of systems of linear equations.

Systems of linear equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Here x_1, x_2, \ldots, x_n are variables and a_{ij}, b_j are constants.

A *solution* of the system is a common solution of all equations in the system. It is an *n*-dimensional vector.

Plenty of problems in mathematics and applications require solving systems of linear equations.

Applications

Problem 1. Find the point of intersection of the lines x - y = -2 and 2x + 3y = 6 in \mathbb{R}^2 .

$$\begin{cases} x - y = -2\\ 2x + 3y = 6 \end{cases}$$

Problem 2. Find the point of intersection of the planes x - y = 2, 2x - y - z = 3, and x + y + z = 6 in \mathbb{R}^3 .

$$\begin{cases} x - y = 2\\ 2x - y - z = 3\\ x + y + z = 6 \end{cases}$$

Method of undetermined coefficients often involves solving systems of linear equations.

Problem 3. Find a quadratic polynomial p(x) such that p(1) = 4, p(2) = 3, and p(3) = 4.

Suppose that
$$p(x) = ax^2 + bx + c$$
. Then
 $p(1) = a + b + c$, $p(2) = 4a + 2b + c$,
 $p(3) = 9a + 3b + c$.

$$\begin{cases} a+b+c = 4\\ 4a+2b+c = 3\\ 9a+3b+c = 4 \end{cases}$$

Problem 4. Evaluate $\int_0^1 \frac{x(x-3)}{(x-1)^2(x+2)} dx$.

To evaluate the integral, we need to decompose the rational function $R(x) = \frac{x(x-3)}{(x-1)^2(x+2)}$ into the sum of simple fractions:

$$R(x) = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{x+2}$$

= $\frac{a(x-1)(x+2) + b(x+2) + c(x-1)^2}{(x-1)^2(x+2)}$
= $\frac{(a+c)x^2 + (a+b-2c)x + (-2a+2b+c)}{(x-1)^2(x+2)}$.
$$\begin{cases} a+c=1\\ a+b-2c=-3\\ -2a+2b+c=0 \end{cases}$$

Traffic flow

Problem. Determine the amount of traffic between each of the four intersections.

Traffic flow

Traffic flow

At each intersection, the incoming traffic has to match the outgoing traffic.

 Intersection A:
 $x_4 + 610 = x_1 + 450$

 Intersection B:
 $x_1 + 400 = x_2 + 640$

 Intersection C:
 $x_2 + 600 = x_3$

 Intersection D:
 $x_3 = x_4 + 520$

$$\begin{cases} x_4 + 610 = x_1 + 450 \\ x_1 + 400 = x_2 + 640 \\ x_2 + 600 = x_3 \\ x_3 = x_4 + 520 \end{cases}$$

$$\iff \begin{cases} -x_1 + x_4 = -160\\ x_1 - x_2 = 240\\ x_2 - x_3 = -600\\ x_3 - x_4 = 520 \end{cases}$$

Problem. Determine the amount of current in each branch of the network.

Kirchhof's law #1 (junction rule): at every node the sum of the incoming currents equals the sum of the outgoing currents.

Node A: $i_1 = i_2 + i_3$ Node B: $i_2 + i_3 = i_1$

Kirchhof's law #2 (loop rule): around every loop the algebraic sum of all voltages is zero.

Ohm's law: for every resistor the voltage drop E, the current *i*, and the resistance *R* satisfy E = iR.

Top loop:
$$9 - i_2 - 4i_1 = 0$$

Bottom loop: $4 - 2i_3 + i_2 - 3i_3 = 0$
Big loop: $4 - 2i_3 - 4i_1 + 9 - 3i_3 = 0$

Remark. The 3rd equation is the sum of the first two equations.

$$\begin{cases} i_1 = i_2 + i_3 \\ 9 - i_2 - 4i_1 = 0 \\ 4 - 2i_3 + i_2 - 3i_3 = 0 \end{cases}$$

$$\iff \begin{cases} i_1 - i_2 - i_3 = 0\\ 4i_1 + i_2 = 9\\ -i_2 + 5i_3 = 4 \end{cases}$$

Stress analysis of a truss

Problem. Assume that the leftmost and rightmost joints are fixed. Find the forces acting on each member of the truss.

Truss bridge

Let $|f_k|$ be the magnitude of the force in the *k*th member. $f_k > 0$ if the member is under tension. $f_k < 0$ if the member is under compression.

Static equilibrium at the joint A: horizontal projection: $-\frac{1}{\sqrt{2}}f_1 + f_4 + \frac{1}{\sqrt{2}}f_5 = 0$ vertical projection: $-\frac{1}{\sqrt{2}}f_1 - f_3 - \frac{1}{\sqrt{2}}f_5 = 0$

Static equilibrium at the joint B: horizontal projection: $-f_4 + f_8 = 0$ vertical projection: $-f_7 = 0$

Static equilibrium at the joint C: horizontal projection: $-f_8 - \frac{1}{\sqrt{2}}f_9 + \frac{1}{\sqrt{2}}f_{12} = 0$ vertical projection: $-\frac{1}{\sqrt{2}}f_9 - f_{11} - \frac{1}{\sqrt{2}}f_{12} = 0$ Static equilibrium at the joint D: horizontal projection: $-f_2 + f_6 = 0$ vertical projection: $f_3 - 10 = 0$

Static equilibrium at the joint E: horizontal projection: $-\frac{1}{\sqrt{2}}f_5 - f_6 + \frac{1}{\sqrt{2}}f_9 + f_{10} = 0$ vertical projection: $\frac{1}{\sqrt{2}}f_5 + f_7 + \frac{1}{\sqrt{2}}f_9 - 15 = 0$

Static equilibrium at the joint F: horizontal projection: $-f_{10} + f_{13} = 0$ vertical projection: $f_{11} - 20 = 0$

$$\begin{cases} -\frac{1}{\sqrt{2}}f_1 + f_4 + \frac{1}{\sqrt{2}}f_5 = 0\\ -\frac{1}{\sqrt{2}}f_1 - f_3 - \frac{1}{\sqrt{2}}f_5 = 0\\ -f_4 + f_8 = 0\\ -f_7 = 0\\ -f_8 - \frac{1}{\sqrt{2}}f_9 + \frac{1}{\sqrt{2}}f_{12} = 0\\ -\frac{1}{\sqrt{2}}f_9 - f_{11} - \frac{1}{\sqrt{2}}f_{12} = 0\\ -f_2 + f_6 = 0\\ f_3 = 10\\ -\frac{1}{\sqrt{2}}f_5 - f_6 + \frac{1}{\sqrt{2}}f_9 + f_{10} = 0\\ \frac{1}{\sqrt{2}}f_5 + f_7 + \frac{1}{\sqrt{2}}f_9 = 15\\ -f_{10} + f_{13} = 0\\ f_{11} = 20 \end{cases}$$