MATH 304
 Linear Algebra

Lecture 4:
Row echelon form.
Gauss-Jordan reduction.

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

Coefficient matrix ($m \times n$) and column vector of the right-hand sides $(m \times 1)$:
$\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right) \quad\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right)$

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

Augmented $m \times(n+1)$ matrix:

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right)
$$

Solution of a system of linear equations splits into two parts: (A) elimination and (B) back substitution.

Both parts can be done by applying a finite number of elementary operations.
Since the elementary operations preserve the standard form of linear equations, we can trace the solution process by looking on the augmented matrix.

In terms of the augmented matrix, the elementary operations are elementary row operations.

Elementary operations for systems of linear equations:
(1) to multiply an equation by a nonzero scalar;
(2) to add an equation multiplied by a scalar to another equation;
(3) to interchange two equations.

Elementary row operations:

(1) to multiply a row by some $r \neq 0$;
(2) to add a scalar multiple of a row to another row;
(3) to interchange two rows.

Remark. The rows are added and multiplied by scalars as vectors (namely, row vectors).

Vector algebra

Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be n-dimensional vectors, and $r \in \mathbb{R}$ be a scalar.

Vector sum: $\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$
Scalar multiple: $\quad r \mathbf{a}=\left(r a_{1}, r a_{2}, \ldots, r a_{n}\right)$
Zero vector: $\quad \mathbf{0}=(0,0, \ldots, 0)$
Negative of a vector: $\quad-\mathbf{b}=\left(-b_{1},-b_{2}, \ldots,-b_{n}\right)$
Vector difference:
$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right)$

Elementary row operations

Augmented matrix:

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
\hline a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\hline \vdots & \vdots & \ddots & \vdots & \vdots \\
\hline a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right)
$$

where $\mathbf{v}_{i}=\left(\begin{array}{llll}a_{i 1} & a_{i 2} & \ldots & a_{i n} \mid\end{array} b_{i}\right)$ is a row vector.

Elementary row operations

Operation 1: to multiply the i th row by $r \neq 0$:

$$
\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
r \mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right)
$$

Elementary row operations

Operation 2: to add the i th row multiplied by r to the j th row:

$$
\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{j} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{j}+r \mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right)
$$

Elementary row operations

Operation 3: to interchange the ith row with the jth row:

$$
\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{j} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{j} \\
\vdots \\
\mathbf{v}_{i} \\
\vdots \\
\mathbf{v}_{m}
\end{array}\right)
$$

Row echelon form

Definition. Leading entry of a matrix is the first nonzero entry in a row.

The goal of the Gaussian elimination is to convert the augmented matrix into row echelon form:

- leading entries shift to the right as we go from the first row to the last one;
- each leading entry is equal to 1 .

$$
\left(\begin{array}{rrrrrrrrrr|r}
1 & -1 & 3 & 0 & 2 & 1 & 4 & 0 & -3 & 7 & 2 \\
0 & 1 & 1 & -2 & 0 & 0 & 6 & 1 & 3 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 & 1 & -4 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 9 & -1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Row echelon form

General matrix in row echelon form:

- leading entries are boxed (all equal to 1);
- all the entries below the staircase line are zero;
- each step of the staircase has height 1 ;
- each circle marks a free variable.

Strict triangular form is a particular case of row echelon form that can occur for systems of n equations in n variables:

The original system of linear equations is consistent if there is no leading entry in the rightmost column of the augmented matrix in row echelon form.

Inconsistent system

The goal of the Gauss-Jordan reduction is to convert the augmented matrix into reduced row echelon form:

- all entries below the staircase line are zero;
- each boxed entry is 1 , the other entries in its column are zero;
- each circle marks a free variable.

Example.
$\left\{\begin{array}{r}x-y=2 \\ 2 x-y-z=3 \\ x+y+z=6\end{array} \quad\left(\begin{array}{rrr|r}1 & -1 & 0 & 2 \\ 2 & -1 & -1 & 3 \\ 1 & 1 & 1 & 6\end{array}\right)\right.$
Row echelon form (also strict triangular):
$\left\{\begin{array}{rl}x-y & =2 \\ y-z & = \\ z & =1 \\ y & 2\end{array}\left(\begin{array}{rrr|r}\boxed{1} & -1 & 0 & 2 \\ 0 & \boxed{1} & -1 & -1 \\ 0 & 0 & \boxed{1} & 2\end{array}\right)\right.$
Reduced row echelon form:
$\left\{\begin{array}{l}x \\ \end{array}\right.$

$$
\begin{aligned}
& =3 \\
y & =1 \\
z & =2
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
\boxed{1} & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

Another example.

$$
\left\{\begin{aligned}
x+y-2 z & =1 \\
y-z & =3 \\
-x+4 y-3 z & =1
\end{aligned} \quad\left(\begin{array}{rrr|r}
1 & 1 & -2 & 1 \\
0 & 1 & -1 & 3 \\
-1 & 4 & -3 & 1
\end{array}\right)\right.
$$

Row echelon form:

$$
\left\{\begin{array}{r}
x+y-2 z=1 \\
y-z=3 \\
0=1
\end{array} \quad\left(\begin{array}{rrr|r}
\boxed{1} & 1 & -2 & 1 \\
0 & 1 & -1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)\right.
$$

Reduced row echelon form:

$$
\left\{\begin{array}{rr}
x-z & =0 \\
y-z & =0 \\
0 & =1
\end{array} \quad\left(\begin{array}{rrr|c}
\boxed{1} & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right.
$$

Yet another example.
$\left\{\begin{aligned} x+y-2 z & =1 \\ y-z & =3 \\ -x+4 y-3 z & =14\end{aligned}\left(\begin{array}{rll|r}1 & 1 & -2 & 1 \\ 0 & 1 & -1 & 3 \\ -1 & 4 & -3 & 14\end{array}\right)\right.$
Row echelon form:

$$
\left\{\begin{aligned}
x+y-2 z & =1 \\
y-z & =3 \\
0 & =0
\end{aligned} \quad\left(\begin{array}{rrr|r}
\boxed{1} & 1 & -2 & 1 \\
0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)\right.
$$

Reduced row echelon form:

$$
\left\{\begin{aligned}
x-z & =-2 \\
y-z & =3 \\
0 & =0
\end{aligned} \quad\left(\begin{array}{rrr|r}
\boxed{1} & 0 & -1 & -2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)\right.
$$

New example. $\left\{x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=10\right.$ $x_{2}+2 x_{3}+3 x_{4}=6$

Augmented matrix: $\left(\begin{array}{cccc|c}1 & 2 & 3 & 4 & 10 \\ 0 & 1 & 2 & 3 & 6\end{array}\right)$
The matrix is already in row echelon form.
To convert it into reduced row echelon form, add -2 times the 2 nd row to the 1 st row:

$$
\begin{gathered}
\left(\begin{array}{rrrr|r}
1 & 0 & -1 & -2 & -2 \\
0 & 1 & 2 & 3 & 6
\end{array}\right) \quad \begin{array}{l}
x_{3} \text { and } x_{4} \text { are } \\
\text { free variables }
\end{array} \\
\left\{\begin{array} { l }
{ x _ { 1 } - x _ { 3 } - 2 x _ { 4 } = - 2 } \\
{ x _ { 2 } + 2 x _ { 3 } + 3 x _ { 4 } = 6 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=x_{3}+2 x_{4}-2 \\
x_{2}=-2 x_{3}-3 x_{4}+6
\end{array}\right.\right.
\end{gathered}
$$

System of linear equations:
$\left\{\begin{array}{l}x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=10 \\ x_{2}+2 x_{3}+3 x_{4}=6\end{array}\right.$
General solution:

$$
\left\{\begin{array}{l}
x_{1}=t+2 s-2 \\
x_{2}=-2 t-3 s+6 \\
x_{3}=t \\
x_{4}=s
\end{array}\right.
$$

Example with a parameter.
$\left\{\begin{array}{l}y+3 z=0 \\ x+y-2 z=0 \\ x+2 y+a z=0\end{array}\right.$
The system is homogeneous (all right-hand sides are zeros). Therefore it is consistent ($x=y=z=0$ is a solution).
Augmented matrix: $\left(\begin{array}{rrr|r}0 & 1 & 3 & 0 \\ 1 & 1 & -2 & 0 \\ 1 & 2 & a & 0\end{array}\right)$
Since the 1st row cannot serve as a pivotal one, we interchange it with the 2 nd row:

$$
\left(\begin{array}{rrr|r}
0 & 1 & 3 & 0 \\
1 & 1 & -2 & 0 \\
1 & 2 & a & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
1 & 2 & a & 0
\end{array}\right)
$$

Now we can start the elimination.
First subtract the 1st row from the 3 rd row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
1 & 2 & a & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|l}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 1 & a+2 & 0
\end{array}\right)
$$

The 2 nd row is our new pivotal row.
Subtract the 2nd row from the 3rd row:

$$
\left(\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 1 & a+2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & a-1 & 0
\end{array}\right)
$$

At this point row reduction splits into two cases.
Case 1: $a \neq 1$. In this case, multiply the 3rd row by $(a-1)^{-1}$:
$\left(\begin{array}{ccc|c}1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & a-1 & 0\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}\boxed{1} & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$
The matrix is converted into row echelon form. We proceed towards reduced row echelon form.
Subtract 3 times the 3rd row from the 2 nd row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Add 2 times the 3 rd row to the 1st row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Finally, subtract the 2 nd row from the 1st row:

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
\boxed{1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Thus $x=y=z=0$ is the only solution.

Case 2: $a=1$. In this case, the matrix is already in row echelon form:
$\left(\begin{array}{rrr|r}\boxed{1} & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
To get reduced row echelon form, subtract the 2 nd row from the 1st row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
\boxed{1} & 0 & -5 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

z is a free variable.

$$
\left\{\begin{array} { l }
{ x - 5 z = 0 } \\
{ y + 3 z = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=5 z \\
y=-3 z
\end{array}\right.\right.
$$

System of linear equations:
$\left\{\begin{array}{l}y+3 z=0 \\ x+y-2 z=0 \\ x+2 y+a z=0\end{array}\right.$
Solution: If $a \neq 1$ then $(x, y, z)=(0,0,0)$; if $a=1$ then $(x, y, z)=(5 t,-3 t, t), t \in \mathbb{R}$.

