MATH 304 Linear Algebra

Lecture 5: Matrix algebra.

Matrices

Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Notation: $A = (a_{ij})_{1 \le i \le n, 1 \le j \le m}$ or simply $A = (a_{ij})$ if the dimensions are known.

An n-dimensional vector can be represented as a $1 \times n$ matrix (row vector) or as an $n \times 1$ matrix (column vector):

$$(x_1, x_2, \dots, x_n)$$
 $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix}$

An $m \times n$ matrix $A = (a_{ij})$ can be regarded as a column of n-dimensional row vectors or as a row of m-dimensional column vectors:

dimensional column vectors:
$$A = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix}, \qquad \mathbf{v}_i = (a_{i1}, a_{i2}, \dots, a_{in})$$

$$(\mathbf{v}_m)$$
 $A = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n), \qquad \mathbf{w}_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$

Vector algebra

Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ be *n*-dimensional vectors, and $r \in \mathbb{R}$ be a scalar.

Vector sum:
$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

Scalar multiple:
$$r\mathbf{a} = (ra_1, ra_2, \dots, ra_n)$$

Zero vector:
$$\mathbf{0} = (0, 0, ..., 0)$$

Negative of a vector:
$$-\mathbf{b} = (-b_1, -b_2, \dots, -b_n)$$

Vector difference:

$$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n)$$

Given *n*-dimensional vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ and scalars r_1, r_2, \dots, r_k , the expression

$$r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$$

is called a **linear combination** of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$.

Also, *vector addition* and *scalar multiplication* are called **linear operations**.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Vector representation of the system:

$$x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \cdots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Theorem The above system is consistent if and only if the vector of right-hand sides is a *linear combination* of columns of the coefficient matrix.

Matrix algebra

Definition. Let $A = (a_{ij})$ and $B = (b_{ij})$ be $m \times n$ matrices. The **sum** A + B is defined to be the $m \times n$ matrix $C = (c_{ij})$ such that $c_{ij} = a_{ij} + b_{ij}$ for all indices i, j.

That is, two matrices with the same dimensions can be added by adding their corresponding entries.

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \\ a_{31} + b_{31} & a_{32} + b_{32} \end{pmatrix}$$

Definition. Given an $m \times n$ matrix $A = (a_{ij})$ and a number r, the **scalar multiple** rA is defined to be the $m \times n$ matrix $D = (d_{ij})$ such that $\boxed{d_{ij} = ra_{ij}}$ for all indices i, j.

That is, to multiply a matrix by a scalar r, one multiplies each entry of the matrix by r.

$$r\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} ra_{11} & ra_{12} & ra_{13} \\ ra_{21} & ra_{22} & ra_{23} \\ ra_{31} & ra_{32} & ra_{33} \end{pmatrix}$$

The $m \times n$ **zero matrix** (all entries are zeros) is denoted O_{mn} or simply O.

Negative of a matrix: -A is defined as (-1)A. Matrix **difference**: A - B is defined as A + (-B).

As far as the *linear operations* (addition and scalar multiplication) are concerned, the $m \times n$ matrices can be regarded as mn-dimensional vectors.

Examples

$$A = \begin{pmatrix} 3 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix},$$

$$C = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

$$\frac{(0.1)}{A+B=\begin{pmatrix} 5.2.0 \end{pmatrix}}$$

$$A + B = \begin{pmatrix} 5 & 2 & 0 \\ 1 & 2 & 2 \end{pmatrix}, \qquad A - B = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 0 & 0 \end{pmatrix},$$

$$2C = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}, \qquad 3D = \begin{pmatrix} 3 & 3 \\ 0 & 3 \end{pmatrix},$$

$$2C + 3D = \begin{pmatrix} 7 & 3 \\ 0 & 5 \end{pmatrix}, \qquad A + D \text{ is not defined.}$$

Properties of linear operations

$$(A + B) + C = A + (B + C)$$

 $A + B = B + A$
 $A + O = O + A = A$
 $A + (-A) = (-A) + A = O$

r(sA) = (rs)A

1 A = A

0A = O

r(A+B) = rA + rB

(r+s)A = rA + sA

Dot product

Definition. The **dot product** of *n*-dimensional vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is a scalar

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n = \sum_{k=1}^n x_k y_k.$$

The dot product is also called the **scalar product**.

Matrix multiplication

The product of matrices A and B is defined if the number of columns in A matches the number of rows in B.

Definition. Let $A = (a_{ik})$ be an $m \times n$ matrix and $B = (b_{kj})$ be an $n \times p$ matrix. The **product** AB is defined to be the $m \times p$ matrix $C = (c_{ij})$ such that $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ for all indices i, j.

That is, matrices are multiplied row by column:

$$\begin{pmatrix} * & * & * \\ * & * & * \end{pmatrix} \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} = \begin{pmatrix} * & * & * \\ * & * & * \end{pmatrix}$$

$$A = \begin{pmatrix} \frac{a_{11} & a_{12} & \dots & a_{1n}}{a_{21} & a_{22} & \dots & a_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \hline a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix}$$

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_p)$$

 $\implies AB = \begin{pmatrix} \mathbf{v}_1 \cdot \mathbf{w}_1 & \mathbf{v}_1 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_1 \cdot \mathbf{w}_p \\ \mathbf{v}_2 \cdot \mathbf{w}_1 & \mathbf{v}_2 \cdot \mathbf{w}_2 & \dots & \mathbf{v}_2 \cdot \mathbf{w}_p \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_m \cdot \mathbf{w}_1 & \mathbf{v}_m \cdot \mathbf{w}_2 & \dots & \mathbf{v}_m \cdot \mathbf{w}_p \end{pmatrix}$

Examples.

$$(x_1, x_2, \dots, x_n) \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = (\sum_{k=1}^n x_k y_k),$$

 $\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} (x_1, x_2, \dots, x_n) = \begin{pmatrix} y_1 x_1 & y_1 x_2 & \dots & y_1 x_n \\ y_2 x_1 & y_2 x_2 & \dots & y_2 x_n \\ \vdots & \vdots & \ddots & \vdots \\ y_n x_1 & y_n x_2 & \dots & y_n x_n \end{pmatrix}.$

Example.

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 & 1 & 1 \\ -2 & 5 & 6 & 0 \\ 1 & 7 & 4 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 1 & 3 & 0 \\ -3 & 17 & 16 & 1 \end{pmatrix}$$

 $\begin{pmatrix} 0 & 3 & 1 & 1 \\ -2 & 5 & 6 & 0 \\ 1 & 7 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$ is not defined

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

 $(a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n - b_n)$

Matrix representation of the system:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Properties of matrix multiplication:

$$(AB)C = A(BC)$$
 (associative law)
 $(A+B)C = AC + BC$ (distributive law #1)
 $C(A+B) = CA + CB$ (distributive law #2)

$$(rA)B = A(rB) = r(AB)$$

Any of the above identities holds provided that matrix sums and products are well defined.

If A and B are $n \times n$ matrices, then both AB and BA are well defined $n \times n$ matrices.

However, in general, $AB \neq BA$.

Example. Let
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Then
$$AB = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$$
, $BA = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$.

If AB does equal BA, we say that the matrices A and B commute.