MATH 304
 Linear Algebra

Lecture 7:
Inverse matrix (continued).

Diagonal matrices

Definition. A square matrix is called diagonal if all non-diagonal entries are zeros.
Example. $\left(\begin{array}{lll}7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$, denoted $\operatorname{diag}(7,1,2)$.
Theorem Let $A=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, $B=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
Then $A+B=\operatorname{diag}\left(s_{1}+t_{1}, s_{2}+t_{2}, \ldots, s_{n}+t_{n}\right)$,

$$
\begin{gathered}
r A=\operatorname{diag}\left(r s_{1}, r s_{2}, \ldots, r s_{n}\right) . \\
A B=\operatorname{diag}\left(s_{1} t_{1}, s_{2} t_{2}, \ldots, s_{n} t_{n}\right) .
\end{gathered}
$$

Identity matrix

Definition. The identity matrix (or unit matrix) is a diagonal matrix with all diagonal entries equal to 1.

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In general, $\quad I=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$.
Theorem. Let A be an arbitrary $m \times n$ matrix.
Then $I_{m} A=A I_{n}=A$.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The inverse of A is an $n \times n$ matrix, denoted A^{-1}, such that

$$
A A^{-1}=A^{-1} A=l .
$$

If A^{-1} exists then the matrix A is called invertible. Otherwise A is called singular.

Let A and B be $n \times n$ matrices. If A is invertible then we can divide B by A :
left division: $A^{-1} B$, right division: $B A^{-1}$.

Basic properties of inverse matrices:

- The inverse matrix (if it exists) is unique.
- If A is invertible, so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.
- If $n \times n$ matrices A and B are invertible, so is
$A B$, and $(A B)^{-1}=B^{-1} A^{-1}$.
- If $n \times n$ matrices $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, so is $A_{1} A_{2} \ldots A_{k}$, and $\left(A_{1} A_{2} \ldots A_{k}\right)^{-1}=A_{k}^{-1} \ldots A_{2}^{-1} A_{1}^{-1}$.

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.

$$
\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
d_{1}^{-1} & 0 & \ldots & 0 \\
0 & d_{2}^{-1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}^{-1}
\end{array}\right)
$$

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.
Proof: If all $d_{i} \neq 0$ then, clearly, $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)=\operatorname{diag}(1, \ldots, 1)=I$, $\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right) \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=\operatorname{diag}(1, \ldots, 1)=I$.

Now suppose that $d_{i}=0$ for some i. Then for any $n \times n$ matrix B the i th row of the matrix $D B$ is a zero row. Hence $D B \neq 1$.

Inverting 2-by-2 matrices

Definition. The determinant of a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\operatorname{det} A=a d-b c$.
Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$.

If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right) .
$$

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$. If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

Proof: Let $B=\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$. Then

$$
A B=B A=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right)=(a d-b c) l_{2} .
$$

In the case $\operatorname{det} A \neq 0$, we have $A^{-1}=(\operatorname{det} A)^{-1} B$. In the case $\operatorname{det} A=0$, the matrix A is not invertible as otherwise $A B=O \Longrightarrow A^{-1} A B=A^{-1} O \Longrightarrow B=O$ $\Longrightarrow A=O$, but the zero matrix is singular.

Problem. Solve a system $\left\{\begin{array}{l}4 x+3 y=5, \\ 3 x+2 y=-1 .\end{array}\right.$
This system is equivalent to a matrix equation

$$
\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)\binom{x}{y}=\binom{5}{-1} .
$$

Let $A=\left(\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right)$. We have $\operatorname{det} A=-1 \neq 0$.
Hence A is invertible. Let's multiply both sides of the matrix equation by A^{-1} from the left:

$$
\begin{gathered}
\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)^{-1}\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)\binom{x}{y}=\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)^{-1}\binom{5}{-1}, \\
\binom{x}{y}=\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)^{-1}\binom{5}{-1}=\frac{1}{-1}\left(\begin{array}{rr}
2 & -3 \\
-3 & 4
\end{array}\right)\binom{5}{-1}=\binom{-13}{19} .
\end{gathered}
$$

System of n linear equations in n variables:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \cdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array} \Longleftrightarrow A \mathbf{x}=\mathbf{b},\right.
$$

where
$A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$.
Theorem If the matrix A is invertible then the system has a unique solution, which is $\mathbf{x}=A^{-1} \mathbf{b}$.

Problem. Solve the matrix equation $X A+B=X$, where $A=\left(\begin{array}{rr}4 & -2 \\ 1 & 1\end{array}\right), \quad B=\left(\begin{array}{ll}5 & 2 \\ 3 & 0\end{array}\right)$.

Since B is a 2×2 matrix, it follows that $X A$ and X are also 2×2 matrices.

$$
\begin{aligned}
& X A+B=X \Longleftrightarrow X-X A=B \\
\Longleftrightarrow & X(I-A)=B \Longleftrightarrow X=B(I-A)^{-1}
\end{aligned}
$$

provided that $I-A$ is an invertible matrix.

$$
I-A=\left(\begin{array}{ll}
-3 & 2 \\
-1 & 0
\end{array}\right)
$$

- $1-A=\left(\begin{array}{ll}-3 & 2 \\ -1 & 0\end{array}\right)$,
- $\operatorname{det}(I-A)=(-3) \cdot 0-2 \cdot(-1)=2$,
- $(I-A)^{-1}=\frac{1}{2}\left(\begin{array}{ll}0 & -2 \\ 1 & -3\end{array}\right)$,
- $X=B(I-A)^{-1}=\left(\begin{array}{ll}5 & 2 \\ 3 & 0\end{array}\right) \frac{1}{2}\left(\begin{array}{ll}0 & -2 \\ 1 & -3\end{array}\right)$
$=\frac{1}{2}\left(\begin{array}{ll}5 & 2 \\ 3 & 0\end{array}\right)\left(\begin{array}{ll}0 & -2 \\ 1 & -3\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}2 & -16 \\ 0 & -6\end{array}\right)=\left(\begin{array}{ll}1 & -8 \\ 0 & -3\end{array}\right)$.

Fundamental results on inverse matrices

Theorem 1 Given a square matrix A, the following are equivalent:
(i) A is invertible;
(ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$;
(iii) the row echelon form of A has no zero rows;
(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Theorem 3 For any $n \times n$ matrices A and B,

$$
B A=I \Longleftrightarrow A B=I
$$

Row echelon form of a square matrix:

invertible case

noninvertible case

