MATH 304 Linear Algebra

Lecture 7: Inverse matrix (continued).

Diagonal matrices

Definition. A square matrix is called **diagonal** if all non-diagonal entries are zeros.

Example.
$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, denoted diag $(7, 1, 2)$.

Theorem Let $A = \operatorname{diag}(s_1, s_2, \ldots, s_n)$, $B = \operatorname{diag}(t_1, t_2, \ldots, t_n)$.

Then $A + B = \text{diag}(s_1 + t_1, s_2 + t_2, \dots, s_n + t_n)$, $rA = \text{diag}(rs_1, rs_2, \dots, rs_n)$. $AB = \text{diag}(s_1t_1, s_2t_2, \dots, s_nt_n)$.

Identity matrix

Definition. The **identity matrix** (or **unit matrix**) is a diagonal matrix with all diagonal entries equal to 1.

$$I_{1} = (1), \quad I_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

In general, $I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$

Theorem. Let A be an arbitrary $m \times n$ matrix. Then $I_m A = A I_n = A$.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The **inverse** of A is an $n \times n$ matrix, denoted A^{-1} , such that

$$AA^{-1} = A^{-1}A = I.$$

If A^{-1} exists then the matrix A is called **invertible**. Otherwise A is called **singular**.

Let A and B be $n \times n$ matrices. If A is invertible then we can **divide** B by A:

left division: $A^{-1}B$, right division: BA^{-1} .

Basic properties of inverse matrices:

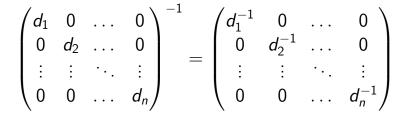
- The inverse matrix (if it exists) is unique.
- If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- If $n \times n$ matrices A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.

• If $n \times n$ matrices A_1, A_2, \ldots, A_k are invertible, so is $A_1A_2 \ldots A_k$, and $(A_1A_2 \ldots A_k)^{-1} = A_k^{-1} \ldots A_2^{-1}A_1^{-1}$.

Inverting diagonal matrices

Theorem A diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1})$.



Inverting diagonal matrices

Theorem A diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1})$.

Proof: If all $d_i \neq 0$ then, clearly, $\operatorname{diag}(d_1, \ldots, d_n) \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) = \operatorname{diag}(1, \ldots, 1) = I$, $\operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) \operatorname{diag}(d_1, \ldots, d_n) = \operatorname{diag}(1, \ldots, 1) = I$. Now suppose that $d_i = 0$ for some i. Then for any $n \times n$ matrix B the ith row of the matrix DB is a

zero row. Hence $DB \neq I$.

Inverting 2-by-2 matrices

Definition. The **determinant** of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is det A = ad - bc.

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$.

If det $A \neq 0$ then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$

Theorem A matrix
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is invertible if
and only if det $A \neq 0$. If det $A \neq 0$ then
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.
Proof: Let $B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Then
 $AB = BA = \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = (ad - bc)l_2$.

In the case det $A \neq 0$, we have $A^{-1} = (\det A)^{-1}B$. In the case det A = 0, the matrix A is not invertible as otherwise $AB = O \implies A^{-1}AB = A^{-1}O \implies B = O$ $\implies A = O$, but the zero matrix is singular.

Problem. Solve a system
$$\begin{cases} 4x + 3y = 5, \\ 3x + 2y = -1. \end{cases}$$

This system is equivalent to a matrix equation

$$\begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}.$$

Let $A = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$. We have det $A = -1 \neq 0$.

Hence A is invertible. Let's multiply both sides of the matrix equation by A^{-1} from the left:

$$\begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 5 \\ -1 \end{pmatrix},$$
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \frac{1}{-1} \begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} -13 \\ 19 \end{pmatrix}.$$

System of *n* linear equations in *n* variables:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases} \iff A\mathbf{x} = \mathbf{b},$$

where

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

٠

Theorem If the matrix A is invertible then the system has a unique solution, which is $\mathbf{x} = A^{-1}\mathbf{b}$.

Problem. Solve the matrix equation XA + B = X, where $A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 2 \\ 3 & 0 \end{pmatrix}$.

Since *B* is a 2×2 matrix, it follows that *XA* and *X* are also 2×2 matrices.

$$XA + B = X \iff X - XA = B$$

 $\iff X(I - A) = B \iff X = B(I - A)^{-1}$
provided that $I - A$ is an invertible matrix.

$$I - A = \begin{pmatrix} -3 & 2 \\ -1 & 0 \end{pmatrix},$$

•
$$I-A = \begin{pmatrix} -3 & 2 \\ -1 & 0 \end{pmatrix}$$
,

•
$$det(I-A) = (-3) \cdot 0 - 2 \cdot (-1) = 2$$
,

•
$$(I-A)^{-1} = \frac{1}{2} \begin{pmatrix} 0 & -2 \\ 1 & -3 \end{pmatrix}$$
,
• $X = B(I-A)^{-1} = \begin{pmatrix} 5 & 2 \\ 3 & 0 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 0 & -2 \\ 1 & -3 \end{pmatrix}$
 $= \frac{1}{2} \begin{pmatrix} 5 & 2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 0 & -2 \\ 1 & -3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & -16 \\ 0 & -6 \end{pmatrix} = \begin{pmatrix} 1 & -8 \\ 0 & -3 \end{pmatrix}$.

Fundamental results on inverse matrices

Theorem 1 Given a square matrix *A*, the following are equivalent:

(i) A is invertible;

(ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$; (iii) the row echelon form of A has no zero rows;

(iv) the reduced row echelon form of A is the identity matrix.

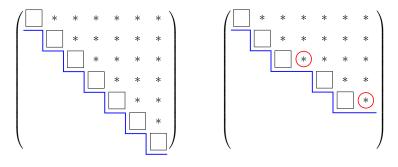
Theorem 2 Suppose that a sequence of elementary row operations converts a matrix *A* into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1} .

Theorem 3 For any $n \times n$ matrices A and B,

$$BA = I \iff AB = I.$$

Row echelon form of a square matrix:



invertible case

noninvertible case