MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Definition. Let A be an $n \times n$ matrix. The **inverse** of A is an $n \times n$ matrix, denoted A^{-1} , such that $AA^{-1} = A^{-1}A = I.$

If A^{-1} exists then the matrix A is called **invertible**. Otherwise A is called **singular**.

Inverting diagonal matrices

Theorem A diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero: $d_i \neq 0$ for $1 \leq i \leq n$.

If D is invertible then $D^{-1} = \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1})$.

Inverting 2-by-2 matrices

Definition. The **determinant** of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is det A = ad - bc.

Theorem A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if det $A \neq 0$.

If det $A \neq 0$ then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$

Fundamental results on inverse matrices

Theorem 1 Given a square matrix *A*, the following are equivalent:

(i) A is invertible;

(ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$; (iii) the row echelon form of A has no zero rows;

(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix *A* into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1} .

Theorem 3 For any $n \times n$ matrices A and B,

$$BA = I \iff AB = I.$$

Row echelon form of a square matrix:

invertible case

noninvertible case

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
.

To check whether A is invertible, we convert it to row echelon form.

Interchange the 1st row with the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}$$

Add -3 times the 1st row to the 2nd row:

$$egin{pmatrix} 1 & 0 & 1 \ 0 & -2 & -3 \ -2 & 3 & 0 \end{pmatrix}$$

Add 2 times the 1st row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & -3 \\ 0 & 3 & 2 \end{pmatrix}$$

Multiply the 2nd row by -1/2:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2 \end{pmatrix}$$

Add -3 times the 2nd row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & -2.5 \end{pmatrix}$$

Multiply the 3rd row by -2/5: $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & 1 \end{pmatrix}$

We already know that the matrix A is invertible.

Let's proceed towards reduced row echelon form.

Add -3/2 times the 3rd row to the 2nd row: $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Add -1 times the 3rd row to the 1st row: $\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$ To obtain A^{-1} , we need to apply the following sequence of elementary row operations to the identity matrix:

- interchange the 1st row with the 2nd row,
- add -3 times the 1st row to the 2nd row,
- add 2 times the 1st row to the 3rd row,
- multiply the 2nd row by -1/2,
- add -3 times the 2nd row to the 3rd row,
- multiply the 3rd row by -2/5,
- add -3/2 times the 3rd row to the 2nd row,
- add -1 times the 3rd row to the 1st row.

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$, and apply elementary row operations to this new matrix.

$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}, \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(A \mid I) = \begin{pmatrix} 3 & -2 & 0 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ -2 & 3 & 0 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -2 & 0 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ -2 & 3 & 0 & | & 0 & 0 & 1 \end{pmatrix}$$

Interchange the 1st row with the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 3 & -2 & 0 & 1 & 0 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Add -3 times the 1st row to the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Add 2 times the 1st row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1 \end{pmatrix}$$

Multiply the 2nd row by -1/2:

$$\begin{pmatrix} 1 & 0 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 1.5 & | & -0.5 & 1.5 & 0 \\ 0 & 3 & 2 & | & 0 & 2 & 1 \end{pmatrix}$$

Add -3 times the 2nd row to the 3rd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & -2.5 & 1.5 & -2.5 & 1 \end{pmatrix}$$

Multiply the 3rd row by -2/5:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$$

Add -3/2 times the 3rd row to the 2nd row:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$$

Add -1 times the 3rd row to the 1st row:

$$\begin{pmatrix} 1 & 0 & 0 & 0.6 & 0 & 0.4 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4 \end{pmatrix}$$

Thus
$$\begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix}$$

.

That is,

$$\begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} \frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

 $\begin{pmatrix} \frac{3}{5} & 0 & \frac{5}{5} \\ \frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 1 & -\frac{2}{5} \end{pmatrix} \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Why does it work?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ 2b_1 & 2b_2 & 2b_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 + 3a_1 & b_2 + 3a_2 & b_3 + 3a_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

Proposition Any elementary row operation can be simulated as left multiplication by a certain matrix.

Elementary matrices

To obtain the matrix EA from A, multiply the *i*th row by r. To obtain the matrix AE from A, multiply the *i*th column by r.

Elementary matrices

To obtain the matrix EA from A, add r times the *i*th row to the *j*th row. To obtain the matrix AE from A, add r times the *j*th column to the *i*th column.

Elementary matrices

To obtain the matrix EA from A, interchange the *i*th row with the *j*th row. To obtain AE from A, interchange the *i*th column with the *j*th column.

Why does it work?

Assume that a square matrix A can be converted to the identity matrix by a sequence of elementary row operations. Then

$$E_k E_{k-1} \dots E_2 E_1 A = I,$$

where E_1, E_2, \ldots, E_k are elementary matrices corresponding to those operations.

Applying the same sequence of operations to the identity matrix, we obtain the matrix

$$B = E_k E_{k-1} \dots E_2 E_1 I = E_k E_{k-1} \dots E_2 E_1.$$

Thus BA = I, which implies that $B = A^{-1}$.

Transpose of a matrix

Definition. Given a matrix A, the **transpose** of A, denoted A^{T} , is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A = (a_{ij})$ then $A^{T} = (b_{ij})$, where $b_{ij} = a_{ji}$.

Examples.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
,
 $\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}^{T} = (7, 8, 9), \qquad \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}^{T} = \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}$

Properties of transposes:

•
$$(A^T)^T = A$$

• $(A+B)^T = A^T + B^T$

•
$$(rA)^T = rA^T$$

- $(AB)^T = B^T A^T$
- $(A_1A_2\ldots A_k)^T = A_k^T\ldots A_2^TA_1^T$

•
$$(A^{-1})^T = (A^T)^{-1}$$

Definition. A square matrix A is said to be symmetric if $A^T = A$.

For example, any diagonal matrix is symmetric.

Proposition For any square matrix A the matrices $B = AA^T$ and $C = A + A^T$ are symmetric.

Proof:

$$B^{T} = (AA^{T})^{T} = (A^{T})^{T}A^{T} = AA^{T} = B,$$

 $C^{T} = (A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = C.$